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ABSTRACT

Because of range limitations imposed by speed and power supplies, covert launch
and recovery of Autonomous Underwater Vehicles (AUVs) near the operating area will be
required for their use in many military applications. This thesis documents the
implementation ¢t precision control and planning facilities on the Phoenix AUV that will
be required to suppori recovery in a small tube and provides a preliminary study of issues
imvolved with AUV recovery by submarines.

Implementation mvolves the development of low-level behaviors for sonar und

vehicle control, mid-level ractics for recovery planning, and a mission-planning system for

translating high-level goals into an exccutable mission. Sonar behaviors consist of modes
for locating and tracking objects, while vehicle control behaviors include the ability to
drive to and ma:ntain a position relative to a tracked object. Finally. a mission-planning
systern allowing graphical specification of mission objectives and recovery parameters is
implemented.

Results of underwater virtual world and in-water testing show that precise AUV
control based on sonar data can be implemented to an accuracy of less thun six inches and
that this degree of precision is sufficient for use by higher-level tactics to plan and control
recovery. Additionally. the mission-planning expert svstem has been shown to reduce
misston planning time by approximately two thirds and results in missions with fewer

logical and prograrmmming errors than manually generated missions.
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I. INTRODUCTION

M. NPS CENTER FOR AUV RESEARCH AND THE PHOENIX AUV

This thesis is concerned with the mission planning, mission control, and precision
maneuvering required to support recovery of the /" Avenix autonomous underwater vehicle
(AUYV) in a simulated torpedo tube. Specific issues covered include automated mission
planning, finite state mission controi, recovery path planning, recovery tube detection and
localization, and precise maneuvering control for docking.

The Naval Posigraduate School (NPS) has been actively involved in autonomous
underwater vehicle research for a number of years. Recently the NPS Center for AUV
Research was established to explore concepts in the design and control of AUVs. As they
are developed, concepts are implemented on the Phoenix AUV, a 236 centimeter long,
neutrally buoyant vehicle weighing approximately 200 kilograms. Research goals include
proving the feasibility of AUV use in shallow water mine countermeasure (MCM)
operations by implementation of a working proof-of-concept system and furthering the
state of the artin the field of AUVs in general. Specific research areas have included AUV
control, navigation, software architecture and mis.ion planning.

The Phoenix AUV (Figure 1) is controlled by two on-board computers connected
via a local-area network (LAN). This LAN can be operated independently or can be
connected to other networks for real-time mornitoring of mission progress. Vehicle
physical control is implemented using two lateral thrusters, two vertical thrusters, two aft
propellers, and eight control planes.

Until recently in-water testing of Phioenix had been lunited to the Center’s 7.5 meter
by 7.5 meter by 2.5 meter test tank and the sub-Olympic size NPS pool. Salt water testing
began in January 1996 at Moss Landing, California. Future testing will be conducted at all

three sites and preparations are in progress for open-water testing in Monterey Bay.
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Figure [: The Phoenix Autonomous Underwater Vehicle [Brutzmaan 96].
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B. MOTIVATION

Counter-mine warfare has recently become an important issue in the eves of the
Navy's senior leadership [Boorda 95]. Joint doctrinai changes, especially the introduction
of littoral warfare 1s a primary mission area, have pushed MCM operations to the forefront.
Mines have many characteristics that make them attractive to coastal nations that might bz
the focus of littoral vaarfare. Mines are inexpensive, readily available, easy to use, difficult
to detect and disable, and have proven very effective against naval and amphibious
operations. The inadequacy of current United States MCM capabilities is anply
documented [Cheney 92§.

The inherently covert nature of AUVs makes them an appealing platform for
shallow-water MCM operations. A small AUV launched and recovered covertly might be
capable of mapping or neutralizing a mine field without being detected. This ought to be

true even if the mine field is actively menitored by hostile forces.

C. PROBLEM DESCRIPTION

Since a small AUV will inevitably have a limited power supply, it will need to be
launched and recovered close to its operating area. Whiie this constraint does not pose a
significant problem in civilian AUV applications, the nezd for covertuess may preclude
launching the AUV from aircraft or ships for military missions such as MCM operations.
The obvious solution is to use submarines to launch and recover AUVs. Of specific interest
therefore is the launch and recovery of AUVs using a submarine’s torpedo tubes.

Launch of an AUV from a torpedc tnbe is a simple matter since launching is what

torpedo tubes are designed for. Recovery 1s much more complex and is not a declared

capability of any submarine, Recovery of an AUV via submarine torpedo tube can be



P

broken down into three subproblems: torpedo tubc location and classification, recovery
path planning, and physical control of the AUV maneuvering along the recovery path.

Torpedo tube 1ocalization and classification invelves using the AUV position, the
tube’s expected position, and active sonar (or some other means) to precisely locate: the
AUV relative to the torpedo tube. [Murphy 96] uses the term extoprioception to describe
this type of localization which involves the position of the vehicle relative to objects in the
operating envirorment. This is in contrast to exteroception, which is the localization of
objects in the environment relative to the AUV, The precise nature of the motion required
for torpedo tube recovery dictates that estimates of AUV/tube relative positioning be
continually refined while the recovery is in progress in order to ensure the AUV is safely
maneuvering using the most accurate information possible.

Once the tube has been located and classified, a safe path into the tube must be
determined. The AUV will attempt to travel along this path during the recovery. A smooth
path must therefore be planned from the location of the AUV ai the beginning of the
evolution to its desired location at the end. This path may need to be periodically replanued
as the position of the tube relative to the AUV is refined and updated.

The final aspect of torpedo tube recovery involves accurate movement of the AUV
to a series of desired positions and orientations relative to the torpedo tube. Once the tube
has been identified and a path planned, the AUV must be capable of accurately following
the commanded path. Motion control must be robust, even in the presence of uniform or

variable oceen currents.

D. THESIS GOALS

A large amount of research has been directed at executing MCM missions with the
Phoenix AUV, but recovery problems have not yet been addressed in any depth. The

primary goal of this thesis is to begin adapting the software architecture of the Phoenix

T
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AUYV to enable torpedo tube recovery. Specifically, developments to the Phoenix software
will enable reliable recovery in a simuiated torpedo tube in the Underwater Virtual World
(UVW) [Bruizman 94). UVW results are verified by in-water experiments to the greatest
extent possible. Issues to be dealt with include global positioning of the recovery torpedo
tube, recovery path planning, and local AUV po:itioning using active sonar and a

mathematical model uring recovery.

E. THESIS ORGANIZATION

The Rational Behavior Model (RBM) is a three layer software architecture designed
to emulate the command structure of @ monned submarine [Byrnes 96]. 1t is within the
context of this architecture that this thesis is organized. This chapter is devoted to the
motivation, problem discussion and goals for this project. Chapter I discusses previous
work in the area of AUV recovery and related work conducted on the Phoenix AUV in
particular. Chapter I discusses the core problems addressed by this work, the general
research technique used in this project and the design of experiments. Chapters IV, V, and
VI discuss impglementation of features of this project at the three layers of the RBM,
Specifically, Chapter TV discusses nnplementation at the lowest layer (execution level),
Chapter V discusses implementation at the middle layer (tactical level). Chapter Vi
discusses implementation of the top layer (strategic level) and the off-line automatic
mission generation expert system. Chapter VII focuses on the conduct and results of
experiments. Conclusions and recommendations for future work are presented in Chapter
VIIL.

Three appendices are also included in this thesis. Appendix A provides instructions
for ubtaining on-line resources. Appendix B provides a listing ¢f the available commands

in the execution level command language describod in Chapter IV and in |Brutzman 94].



Appendix C provides instrections on the use of the rnission planning expert system
described in Chapter V1.

Source code for all software developed during ¢ conduct of this research is
available as part of an on-line softwars reference. {astructions for obtaiuin; this and other
on-line resources are provided in Appendix A, Addiiinally, source codeis published in

[Davis 96].
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Il. RELATED WORK

A. INTRODUCTION

There are several potential AUV applications in addition to MCM that are being
explored by various organizations around the world. Environmental monitoring.
oceanographic research and maintenance/monitoring of underwater structures are just a
few cxamples. AUV’s are attractive in these areas for a number of reasons. Because of
their size and their nonreliance on human operators, they are potentiaily less expensive to
purchase and operate than manned or remotely operated underwater vehicles. AUV’s
might be deployed in larger numbers, for longer periods and on shorter notice [Smith 94,
Bellingham 94]. While remotely operated vehicles (ROV’s) partially share these
advantages, the requirement of a physical connection between the ROV and a host platform
or ship limits the ROV’s operating range and the required tether can be easily fouled. The
latter problem can be particularly limiting in restricted environments such as kelp forests
or under ice [Bellingham 94]. Given the potential applications and advantages of AUV’s,
it is no wonder that military, academic and commercial organizations around the world are
conducting research using these vehicles.

This chapter is divided into two major parts. The first covers research efforts of
other organizations that have been directed towards the recovery of AUVs. This section is
by no means a complete survey of world-wide AUV research. For a broader overview of
this subject, the reader is advised refer to [UUST 95, AUV 96]. The second section of this
chapter describes related research conducted on Phoenix. In this latter section emphasis is
given to the overall control architecture of Phoenix and the use of sonar for local-area

navigation.
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B. RECOVERY OF AUTONOMOUS UNDERWATER VEHICLES

1. Massachusetts Institute of Technology (MIT)

Odyssey Il (Figure 2) is a robot developed by the Massachusetts Institute of
Technology (MIT) Sea Grant College Program. Odyssey II was built for the conduct of two
specific scientific missions: under-ice mapping and rapid response to volcanic events at
mid-ocean ridges. Odyssey Il is 215 centimeters in length, 59 centimeters diameter and
displaces 140 kilograms. Major design goals were to .ninimize drag, power requirements
aad size while maximizing hull strength and endurance. These sometimes contradictory
goals were necessary to support long missions under extreme environmental conditions.

"Bellingham 94]

Figure 2: The Odvssev Il AUV [MIT Home Page 96].

Physical control of Odyssey II is via a singlc aft-mounted thruster and four control

planes mounted on the aft portion of the fuselage. The absence of latcral and vertical
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thrusters means that Odyssey /7 must maintair forward motion in order to maneuver.
Minimum marneuvering speed is approximately 0.5 meters per second and turn radius is
approximately five meters [Bellingham 94]. Programmed vehicle behaviors must take
these maneuvering characteristics into account.

Qdyvssey II uses three fixed sonars for obstacle detection/avoidance and an aititude
sonar that can be oriented vertically to maintain altitude from the sea floor or overhead ice.
A low-frequency hyperbolic long-baseline acoustic system is used for vehicle navigation
during the conduct of a mission [Bellingham 92]. Misston sensors include various
oceanographic instruments, a still camera and a video recorder. The primary on-board
computer 15 a 40MHz 68030 operating under the OS-9 real-time operating system. This
computer is connected to several raicrocontrollers that are responsible for control of some
of the vehicle’s subsystems. {Bellingham 94]

Logical control of Odyssey I uses a lavered software system. The prirnary building
block of the system is referred to as a hehavior. An individual behavior is responsible for
a specific type of action. Examples of behavior types include homing, collision detection,
survey with navigation, and race track. The current values and prioriti :; of all active
behaviors as well as tue sensor data is maintained in a vehicle state structure. This structure
is evalnated by the dynamic controlier which actually commands the vehicle’s physical
actuators. [Bellingham 94}

Recovery of Odyssey II relics on homing and uses a commercially available ultra-
short baseline (LISBL) acoustic system as a beacon. The hoining behavior uses range and
bearing updates from the UBSL. system to guide Odyssey I into a capture net. The system
has been successfully tested in under-ice operations with the vehicle typically returning to
within 30 cm of the homing beacon [Bellingham 94]. While navigational accuracy of 3()
cm s not sufficient to control an ertire torpedo-tube recovery, a system such as this may

be 1deai for th: near-field or close-proximity navigation portion of the recovery. An
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acoustic navigation system providing accuracy to less than one meter might be used to

position the AUV relative to the recovery tube, so that on-board AUV sensors can acquire/

classify the recovery tube and control the final portions of the recovery.
2. Florida Atlantic University

a. Ocean Voyager 11

Occan Voyager 11, shown in Figure 3, is the result of a joint research effort
conducted by the Ocean Engineering Department of Florida Atlantic University (FAU) and
the Marine Scieace Department of the University of South Florida. Ocean Voyager Il is an
AUV similar in size and structure to Odvssey II and is intended for coastal oceanographic
rescarch. The vehicle is 240 centimeters long and displaces approximately 250 kiiograms.

Maximum speed is 1.54 meters per second and endurance is approximately eight hours.

[Smith 94]

Figure 3: The Ocean Voyager I AUV [FAU 96].
Like Odyssey I, Ocean Voyager Il uses a single aft mounted thruster and

four control plancs mounted on the aft poriion of the fuselage. Again, this control

arrangement requires Ocean Voyager 11 to maintain foiward speed to maintain posture
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control. This constraint is not a problem given the type of mission for which the vehicle is
intended. While Odyssey Il is designed for deep-water operations, the missions for which
Ocean Voyager I is intended require the vehicle to cruise in a regular pattern at a fixed
altitude above the bottom [White 96, Smith 94]. Specific missions include monitoring sea
grass, monitoring macro-algae beds and evaluating the effects of storm-front passage
[Smith 94].

While the missions for which Ocean Voyager Il is designed are fairly
specific in nature, each mission requires different sensor packages. The sensor payload is
contained immediately aft of the AUV s nose cone and is designed to be modular in nature.
This modularity allows for fairly simple but specialized sensor packages installed for each
mission [White 96].

Logical control of Ocean Voyager II is implemented by a fuzzy rule-based
algorithm. The control algorithm is similar to that of Odvssey II except that instead of
behaviors, Ocean Voyager II control modes use the results of fuzzy rules to compute
control commands and confidence levels. The outptit of each mode is evaluated by the
fuzzy weighted decision arbiter which determines the actual control outputs. Abort and
avoid modes provide for vehicle safety. Track, stable and no-operation modes provide for
data collection during normal operation. Additional modes for waypoint navigation,

docking or other behaviors are possible but have not yet been tested. [Smith 96]

b. Recovery of Ocean Voyager II
Significant simulation-based research in the arca of AUV recovery has been
conducted using Gcean Vovager Ii. In {Rae 92, Rac 93] the possibility of usin

1o control recovery by a submarine was explored, while [White 96] documents more recent

research into using the same general procedure to control docking with a fixed structure.



The fuzzy docking algorithm uses a “virtual funnel” to control the AUV
towards the goal. The virtual funnel is represented by fuzzy rules that define desired
mation for the AUV given its current position. As long as the vehicle remains inside the
region defined by the virtual funnel, it will proceed towards the docking target. If the AUV
wanders outside the funnel, it will be vectored towards a new starting position and will
begin again. The size and shape of the docking funnel are determined by vehicle
characteristics and the external environment. A strength of the fuzzy docking zlgorithm is
that obstacle avoidance is an integral consideration. A flow chart representatior. of the

fuzzy docking algorithm is depicted in Figure 4. [Rae 92, Rae 93, White 96]

Approach Target

4

——® In Funnel? —N$ Backout

Yes

Y
Reached Dock?

Yes

Y
Stop

Figure 4: Fuzzy Docking Algorithm [Smith 96].

[Rae 92, Rae 93] assume that the AUV has accurate relative position
information for itself and the dock throughout the docking procedure. While this

assumption precluded immediate implementation in the vehicle, tests documented in these
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papers indicated that the algorithm was valid so long as accurate navigational data was
obtained. Specifically [Rae 92] documents simulation results of fuzzy docking algorithm
use to dock with a stationary submarine. [Rae 93] expands on this work by simulating the
use of the algorithm to dock with a moving submarine and also attempts to model suction
forces and wake turbulence created by a moving submarine. {White 96] documents
simulation results that indicate that if a boundary area is included in the virtual funnel to
account for navigational inaccuracy as depicted in Figure 5, the algorithm is still valid.
Simulation results documented in [White 96] were based on expected navigational
accuracy using the DivetrackerTM system. An interesting additional result was that the
navigational accuracy of the DivetrackerTM system may be sufficient to control the entire

docking maneuver.

3. Shenyang Research and Development Centre of Robotics

The Shenyang Research and Development Centre of Robotics is a rescarch
organization in the People’s Republic of China. The AUV being developed by this group
is named Explorer. While Explorer is similar to the Odyssey I and Ocean Voyager II in
operating capabilitics and characteristics, it is interesting and relevant in this context
because of its recovery device. Although Explorer is operated from a surface ship, launch
and recovery takes place underwater.

Four options were considered for Explorer’s launch and recovery system: recovery
in the center well of a support ship, recovery using a submarine. recovery using a semi-
submersible platform, and recovery using a submersible platform. The final system uses a
submersible cage that is lowered by a crane on the support ship. The decision to use an
underwater launch and recovery procedure was based on two factors: the difficulty of a
surface recovery in high sea states and Explorer’s relatively poor navigational capabilitics

on the surface. [Ditang 92]
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Figure 5: Virtual Docking Funnel for the Fuzzy Docking Algorithm [Smith 96].



The launcher itself is a cage-like structure that is lowered by crane to a depth of 30
to 50 meters. The launcher has two locking arms for securing the AUV when it is in the
launcher, a television camera for monitoring of the recovery and two vertical thrusters
which are used to maintain the launcher at the specified depth. Explorer uses an ultrashort
baseline (USBL) navigation system and an on-board video camera to navigate during the

reccvery process. A drawing of the launcher configuration 1s depicted in Figure 6.

[Ditang 92]
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Figure 6: The Explorer AUV Launcher (units are mm) [Ditang 92].

The Explorer recavery process consists of five steps. First the launcher is lowered
to the appropriate depth. Once lowered to the specified depth, the launcher thrusters
antomatically maintain the launcher’s depth so that motion control by the ship-board
operator is not required. Next Explorer uses the USBL system to navigate to a position in
front of the launcher. Once within visual range, the on-board video camera is used to
identify reference points on the launcher and provide precise relative position information
during the final phase of the recovery. The launcher operator uses the launcher’s camera

to determine when the AUV is in the final recovery position. Once the AUV is in place the
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locking arms are closed, and both launcher and AUV can be raised into the ship. A

depiction of an Explorer recovery using the launcher can be seen in Figure 7. [Ditang 92]
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Figure 7: An Explorer AUV Recovery [Ditang 92].

While recovery of an AUV in this fashion is a far cry from recovery within a

torpedo tube, it is noteworthy in two respects. First, this system requires close coordination

between the recovering ship and the AUV, Tf the lauacher is not at the appropriate depth

or location, or if the locking arms are not operated properly, the recovery will not be

successful. This coordination between the AUV and its recovery vehicle is a basic

assumption upon which successful recovery is based and is discussed in more detail in

[Gwin 92] and [Chapuis 96]. Second, Explorer uses multiple navigation techniques during
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different phases of the recovery. The on-board television camera provides accurate local
navigation during the final phase of the recovery, but video is of no use in locating the
launcher from a distance of more than a few feet. The USBL navigation system allows
Explorer to get close to the launcher, but does not provide enough precision to actually
enter the launcher.

The recovery procedure being considered for Phoenix is similar, using the
DivetrackerTM system to navigate to a position from which the recovery tube can be
acquired and identified using the two on-board sonar systems. The Phoenix sonars are then
used for precision maneuvering into the tube using techniques described in [Healey 94] and

[Marco 96al.

4, Centre Technique Des Systemes Navals (CTSN)

As part of a larger feasibility study on the design of recoverable unmanned
underwater vehicles {UUV’s), the Centre Technique Des Systemes Navals (CTSN),
located in Toulon France. has attempted to identify functions upon which UUV launch and
recovery from submarines rely and the environmental factors affecting each of these
functions [Chapuis 96]. For the most part the functions and environmental factors
identified are relevant to the launch ana recovery of both AUV’s and ROV's. Functions
ae divided into two types: main functions and constraint functions. Main functions are
those functions that directly accomplish high level goals. Constraint functions are those
that facilitate the successtul completion of main functions or are inherent subfunctions of
a main function.

For UUV recovery, one main function and six constraint functions were identified.
These fun.ctions and the factors effecting thein are shown in " able 1. T'he main function is
simply the transition of the UTUV from the open sca into the submarine. Constraint

functions include communication with the submarine, entry into the recovery system,
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straight navigation despite swell and waves, adapting to depth effects such as pressure and
light level, obstacle avoidance. and resistance to the marine environment. By performing
this assessment process repeatedly, the problem requirements of torpedo-tube docking with

a submarine are fully specified. {Chapuis 96]

Table 1. UUV Recovery Functions. Underlined criteria are considered dominant. After

Function Criteria
Transition from open sea into | vehicle speed
submarine vehicle .
Communicate with submarine | Communication system type
attenuation

intensity
frecquency hand

range

Enter recovery system

vehicle path
vehicle speed
vehicle size

recovery device size

recovery device sensors

Navigate straight in the pres
ence of waves and current

wave signiticant height
wave period
wave direction

current direction

—

Adapt to depth effects

depth

temperature

Avoid obstacles

obstacle density
obstacle speed
obstacle direction

distance obstacle/vehic

le

Resist the marine environment

acidity

[Chapuis 96]



5. Institute for Systems and Robotics, Instituto Superior Tecnico

Still another AUV research project is being conducted by the Institute for Systems
and Robotics Instituto Superior Tecnico (IST) of Lisbon, Portugal. The research vehicle of
this organization is named Marius. However this research is relevant in the context of this
thesis (specifically Chapter VI) because of the mission control/planning features rather than
the vehicle itself.

High level mission control of Marius uses a mathematical structure called a Perri
net [Cassane as 93, Peterson 81]. A Petri net is a type of graph consisting of transitions,
places and arcs. When used for AUV mission control, transitions correspond to actions to
be undertaken by the vehicle, places correspond to preconditions for execution of a
transition or results of transition execution, and arcs arz used to connect transitions to the
appropriate precondition and postcondition places. A token is used to mark all places
whose conditions are satisfied. When all of a transition’s precondition places contain
tokens, the transition is enabled. Since multiple transitions may be enabled at the same
time, Petri nets are well suited to representing parallelism in a system.

The COR AL development environment has been developed by IST as the interface
for generating missions. This systein uses a graphical interface to define the Petri net
represcating a mission, and assign specific tasks to the transitions. A CORAL Engince has
also been developed to accept and exccute Petri net descriptions. Details of the CORAL
system can be found in [Oliveira 96].

Recent research has been conducted to use the CORAL system for defining and
exeeuting missions with other AUVs, Towards this end, a mission was successfully
exccuted by the Phoenix AUV using CORAL without making any modification to Phoenix
software [Healey 96]. The results of this research are an indication of the general

equivalence of several AUV multiple-level mission-control strategies.
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C. THE PHOENIX AUTONOMOUS UNDERWATER VEHICLE

1. Hardware Configuration

The Phnenix AUV is 235 centimeters in length, 41 centimeters in width, 25
centimeters in height and displaces 198 kilograms [I.eonhardt 96]. The main body, which
houses Phoenix’ electronic and power equipment, is constructed of aluminum and is
designed to be water tight to eight meter depth. The free-flood nose cone is constructed of
tiberglass and houses the vehicle’s sonars, depth sensor and waterspeed probe. Physical
control of Phoenix is via two aft thiusters, two lateral cross-body thrusters, two vertical
cross-body thrusters, and eight control plunes. The rectangular hull form and large number
of propulsion effectors e tended to facilitate precise position and orientation control

whether the vehicle is hovering or transiting. The external layout of Phoenix is depicted in

Figure 8.
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Figure 8: Phoenix External Configuration [Leonhardt 96].
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Phoenix is controlled by two on-board computers. The vehicle’s actuators and
sensors are monitored and controlled by processes running on a 30 MHz Gespac 68030
computer under the OS-9 real-time operating system. Higher-level mission control, data
collection and planning are handled by processes running on a Sun Voyager workstation
under the Unix operating system. The two computers are connected by an on-board
Ethernct local-area network (LAN). The vehicle also has an external Ethernet connector
which can be used to communicate with the on-board computers from an cxternal network.
This external connection is primarily used for mission loading and data retrieval and is
simply terminated during untethered missions.

Phoenix ' primary navigational equipment consists of a differential Global
Positioning System (GPS) receiver and a Divetracker™ ghort baseline acoustic tracking
system. Phoenix’ usc of these systems is covered in detail in {McClarin 96] and
[Scrivener96]. In addition, Phoenix has a turbine flow-meter probe for water speed
measurement, a depth cell, pitch, roll and yaw rate gyros, and heading and vertical gyros.

Phoenix has three sonars: @ PSA900 altimeter sonar, an §T1000 mechanically
steered sonar and an ST725 mechanically steered sonar. The PSA900 and ST 1000 sonars
are controlled from the GESPAC computer while the ST725 iz controlled by the Sun
Voyager. The ST1000 has 4 one-degree conical beam and a 360-degree sweep [Tritech
International Ltd. 92a]. The ST725 also has a 360-degree sweep, with a horizontal width
of 2.5 degrees and a vertical width of 28 degrees [Tritech International L.td. 92b].

Other on-board equipment includes two leak detectors, two lead-acid-gel batterics
capablc of providing approximately two hours of power for the vehicle’s computers and
motors, and hydrogen absorbers located throughout the vehicle. The internal layout of

Phoenix is depicted in Figure 9.
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Pigure 9: Phoenix Internal Hardware Configuration [Leonhardt 96].

2. The Ralional %ehavior Model (RBW)

2. {werview
The Raticnal Behavior Model (RBM) is a thres-layer software architecture
for the conirol of autonomons vehicles [Bymes 93, Byrites 96]. RBM attempts to closely

maodal the command st

wiure of manned ships as depicted in Figure 10. The top layer

(strafegic leved) i resnonsibie for defining high-lesel goals and controlling overall mission
sequencing. The sirategic level of RBM roughly corresponds to the commanding otficer
of awauncd sidp. The middle layer (tactical level) is responsible for interpreting the high-

level guidance from ibe strategic level and issuing control commanas to the lowest layer
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(execution level) [Marco 96b]. In addition to direction of the execution level, the tactical
level is responsible for navigation, obstacle detection/classification, obstacle avoidance,
path planning, and system monitoring [Leonhardt 96]. The responsibilities of the tactical
level are analogous to those ol the officer watch team on a manned ship. The execution
level is responsible for interfacing with the vehicle’s hardware to produce desired physical
respunses. This layver rorresponds to the watch-standers on a manned ship. In Phoenix
implementation of RBM the strategic and tactical levels tun on the Sun Voyager while the
execution level runs on the Gespac computer. Communication between th:¢ tactical and
execution levels is via BSD Unix sockets while comnmunication between processes at the

tactical level is via Unix pipes [Leonhardt 96].

REBM Emphasi Manned
Level Submarine
Stratsgic Mi ssi.on Commanding
‘\ Logic Officer
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Figure 10 The Rational Behavior Model Software Architecture [Holden 95].

b. Strategic Level
An RBM strategic-level mission is structured as a deterministic finite

automata (DFA)Y, sometimes referred (o as a finire state machine [Hoperoft 79]. Each high-



level mission goal (or phase) represents a node (or state) in the DFA. Transitions within
the DFA occur whenever a phase succeeds or fails. Upon phase completion or failure,
subsequent phases to execute are specificd by the transitions of the DFA. Thus each node
has two exit transitions: one for successful phase completion and one for phase failure. On
first consigeration, limiting each node of the DFA to exactly two exit transitions might
seem to restrict the versatility of the RBM strategic level. However any DFA of arbitrary
complexity can be restructured as a logically equivalent binary DFA because any decision
tree can be restructured into an equivalent binary decision tree [Rowe 88]. Thus this
restriction on the DFA structure in no way limits the versatility of the strategic level. A
graphical representation of an RBM strategic-level DFA for a simple search mission is
shown in Figure 11. Implementation of the strategic level as a structured DFA provides a
flexible means of describing and sequencing sophisticated missions.

In order to execute a mission, the strategic level requires threc software
components. The first part is a DFA specification of the mission. The second part is a
mission controller that will control transitions through the DFA and initiate the appropriate
phases at the appropriate times. The final part is a set of primitive strategic-level goals that
provide the syntax and semantics of a command language from the strategic to the tactical
level. These goals are implemented as messages to the tactical level.

The set of available messages to the tactical level constitute what amounts
1o a tactical-level command language. Commands are used to tell the tactical level to start
timers, specify hover points and waypcints, conduct searches and to perform other high-

level operations that make up the strategic level’s primitive goal set.
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A final noteworthy aspect of the RBM strategic level is the absence of

mathematical computation. The RBM architectural structure permits arithmetic
computations to be performed only in the lower two RBM layers. In fact the strategic level
as initially proposed in [Byrnes 93] further required that numerical data be confined
entirely to the lower levels of the RBM. It has subsequently been found desirable to permit
numerical data at the strategic level as part of the high-level goal specifications [Leonhardt
96], although this level remains concerned only with initiating phases and waiting for
successful completion or failure. This example alludes to a larger issue that must
constantly be dealt with: what facilities need to be placed at what layers of a multi-layer
software architccture? In this instance, the final decision was hased more on how the data

was being used than what type of data it was.

c¢. Tactical Level

On Phoenix several concurrent processes are used to implement the tactical
level. These processes consist of the officer of the deck (OOD) module, the sonar module,
the navigator module and the replanner module [Leonhardt 96]. Future plans include the
implementation of an engineer module that will be responsible for monitoring and
troubleshooting vehicle systems and detecting system failures and degradations.

The GOD module receives commands from the strategic level and state
information from the execution level. The OOD u:es this information to direct the other
tactical level modules and the execution level [Leonhardt 96]. Additionally, the OOD
module determines when individual phases have completed or failed and responds
accordingly to strategic level queries conceming the status of the current phase. OOD
respons.s to strategic level queries are always binary in nature and indicate a yes or no
response [Bymes 96]. More detailed information concerning the implementation of the

OOD module can be found in [Leonhardt 96].
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The sonar module is responsible for controlling the ST725 sonar and
interpreting the sonar’s data. During most operations the sonar is swept back and forth
directly in front of the AUV in order to find and classify objects in Phoenix’ path, but it can
also be used to conduct a 360 degree search from a hover [Campbell 96]. The sonar module
uses parametric linear regression to construct line segments from sonar returns and a rule
based expert system to connect line segments into polygons. This sonar return
classification process is described in detail in [Brutzman 92] and [Campbell 96].

The navigator module is responsible for maintaining accurate current

position information. A Kalman filter is used to combine GPS, differential GPS,

Divetracker'™ and dead reckoning data to compute Phoenix’ position. Implementation
details of the navigator module can be found in [McClarin 96].

The replanner is responsible for planning safe paths around obstacles
detected by the sonar module. Replanner implementation is covered in delail in

[Leonhardt 96].

d. Execution Level

The execution level is implemented as a single closed-loop process. Each
loop iteration consists of three phases: sense, decide and act. The execution Jevel process
reads sensors and computes values for parimeters that do not have a dedicated scnsor
during the sense portion of the loop. The exccution level process then uses this information
to deterinine what control inputs are necessary to achieve the most recent tactical level
command. Finally appropriate commands are sent to each control actuator. [Burns 96]

In addition the ¢xecution level forwards a copy of the updated state vector
to the tactical level and checks for a new command from the tactical ievel cach time through
the closed loop. The complete set of tactical level commands also constitutes a command

language |Brutzman 96}. Each command consists of a keyword followed by a number of
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parameters. Execution-level commands are available for explicitly setting control
actuators, setting control modes and updating state information such as position and ocean
current that is maintained at the execution level. The most recent command determines
what control mode the AUV will use. Available control modes include hover control,
waypoint control, lateral control, rotate control and a few others. A subset of the available
commands is shown in Figure 12, with a complete listing included in Appendix B.

A final responsibility of the execution level is the initiation of a reflexive
mission abort under certain circumnstances [Bums 96]. A mission wil: be aborted if any of
the following occurs: leak detected, low battery, imminent collision or loss of primary

navigation system. In the event of an automatic abort, the AUV will surface as quickly as

possible using thrusters and planes. Upon reaching the surface, the mission will termiuate.

3. Precision Maneuvering using Sonar
Recognizing that accurate positioning relative to objects in the AUV’s environment
is at times more important than accurate global navigation, research into using Phoenix’
sonars for navigational purposes was begun shortly after the project’s inception. Early
““orts focused on tactical and execution level coordination and command sequencing in
order to facilitate navigational use of the sonar and on implementing primitive behaviors

for control and use of vehicle sonars.
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WAIT # “Wait/run for # seconds
RPM # [##] Prop ordered rpm values
COURSE # Set new ordered course
TURN # Change ordered course #
RUDDER # Force rudder to # degrees
DEPTH # Set new ordered depth
PLANES # Force planes to # degrees
ROTATE # Open loop rotate control
NOROTATE Disablc open loop rotate

LATERAL # Open loop lateral control

POSTURE #a #b #c #d #c #f
(%, Y, z, phi, theta, psi)

POSITION # ## [#4] Reset dead reckon
i.e. n:vigation fix

ORIENTATION # ## ### (phi, theta, psi)

WAYPOINT #X #Y [#Z]

HOVER [#X #Y] [#7] [#orientation]
[#standoff-distance)
GPS-FIX Proceed to shallow depth
take GPS fix

GPS-FIX-COMPLETE Surface GPS fix complete

TRACE Verbose print statements

Figure 12: Sample Execution Level Commands [Brutzman 94].
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Early results were published in [Healey 94]. The first significant result of this
research was the implementation of vehicle behaviors that used the newly installed lateral
and vertical thrusters to obtain hover-like control. These behaviors included heading
control. depth and pitch control, lateral speed control and lateral position control.
Behaviors were also implemented for use of the sonars and included center sonar, ping and
get sonar ranye, step sonar (without pinging) and initiate or reset the sonar data filters. The
philosophy used during this research was to accurately implement functionality at the
execution level before attempting to use these behaviors at the highex RBM levels
[Healey 94].

Once accurately implemented, these behaviors were used to achieve bottom-
following and wall-following behaviors. These behaviors were implemented using simple
proportional derivative (PD) control laws for thruster values. Command sequencing and
timing were also addressed at this stage. For example, it is futile to command the AUV to
maintain a distance from a wall if the sonar is not directed towards the wall. It is therefore
the responsibility of the tactical level to sequence commands to the execution level
appropriately. [Healey 94]

Recently a more robust method of AUV positioning relative to an object has been
developed. This method, documented in [Marco 96a], uses the ST 1000 to locate the target
and uses a mathematical model to navigate to the commanded location relative to the
object.

The position of the object, in this case a 0.5 meter diameter cylinder, is determined
by continually sweeping the ST1000 through a sector centered on the expected bearing of
the object. The sector size was 70 degrees and angular resolution of the sonar was 1.8
degrees. Sonar returns are connected into segments which are examined to detzrmine
which segments represent the cylinder. Simple rules based on the cylinder’s size, shape

and location are used o determine which segments comprise the cylinder. Once the
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cylinder is identified, the location of the vehicle in a navigation frame attached to the
cylinder with axes aligned North (x) and East (y) can be computed.

Since the target position update is much slower than the ten hertz control foop, a
simplified mathematical model for hydrodynamic response is used to navigate towards the
desired relative position between updates. The model includes drag, added mnass and steady
state surge, It is assumed that the estimated position of the target based on sonar returns is
accurate while the mathematical model is inaccurate. Therefore the current model estimate
is reset whenever the sonar updates the target position. Results reported in [Marco 96a|
indicate that this methodology works well despite known inaccuracies in the mathematical

model.

D. SUMMARY

Given the wide array of potential uses and advantages for AUV, it is no surprise
that research is being conducted by numerous organizations worldwide. There ure however
many issues that remain to be resolved. One of these is AUV recovery. Several
organizations have begun work on different recovery techniques, and there are a number of
systems in various rescarch stages. Various aspects of these systems may prove helpful in
solving the problem of covert launch and recovery of AUVs from submarines.

Research conducted using Phoenix in the arca of precision maneuvering using sonar
may prove helpiul as well. The technique of combining sonar feature extraction and
model-based control in particular forms the basis of a significant portion of the research

detailed in the following chapters.
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III. RESEARCH METHODOLOGY

A. INTRODUCTION

This chapter is intended as 2n overview of the tools and methodology used during
this research. This discussion is broken into three sections. Section B covers the
Underwater Virtual World (UVW), a three-dimensional (3D) graphical simulation that
supports realistic and comprehensive testing ot an AUV in the laboratory. Section B also
cxamines specific of the UVW and the enhancements that were made to suppoit this
research, Section C covers implementation and testing using the UVW. Section D covers

validation of vehicle software in the real world.
B. UNDERWATER VIRTUAL WORLD (UVW)

I. Overview

Implementation and testing of AUV software in the real world is inherently difficult
for a number of reasons. Logistical requirements, vehicle maintenance and limited power
supplies all limit the amount of in-water testing that is possible even under optimal
circumstances. Additionally, the remote envivonment in which AUV operate precludes
run time monitoring and can make data evaluation after the tact ditficult at best. Finally
the unpredictability ot the marine environment may make it difficult or impossible to
conduct tests within desired environmental parameters. The UVW is mcant to address all
of these issues. By providing a means ot comprehensively and accurately testing the AUV
in the laboratory. the UVW allows the imiplementation and testing of vehicle software
ander conditions such as ocean current, 1esuiicied-area mancuvering and depths that are
impractical or impossible to duplicate in real-world testing. | Brutzman 94, Bratzman 95|

The UYW is organized in two fairly distinct picees: the dynamics module and the

viewer. The dynamics module 1 presents the virtual world in which the AUV is operating.
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Included in the dynamics module are vehicle hydrodynamics and simulated sensor
response, During the sense portion of the control loop, the vehicle’s execution-level
software relays a copy of the state vector from the previous loop to the dynamics module.
The state vector includes values for all salient vehicle characteristics including posture,
velocities, accelerations, and control and sensor settings. The dynamics module applies the
vehicle's hydrodynamics formulas, calculates the sensor readings. and returns an updated
state vector to the execution level. This relay of state vectors between the dynamics module
and the execution level takes the place of physical sensor readings and actuator response
by the execution level in the real world, [Brutzman 94|

The second portion of the UVW, the viewer, provides real-time interactive 3D
graphics visualization of the AUV during test runs in the UVW. Control settings (planes,
propellers and thrusters) and sonar are represented graphically allowing intuitive
qualitative analysis of vehicle performance. Since the AUV relies only upon its sensors,
visualization is of little importance to the vehicle itself. Itis, however, extremely useful to
human operators 1o be able to see how the AUV is performing without having to analyze
large amounts of data. The diagnostic value of this tool has been proven on an almost daily
basis. [Brutzman 94, Brutzman 95]

The viewer is written using the Open [nventor graphics packuage {Wernecke 94,
Based on the Open GL graphics library, Open Inventor provides an object-oriented
extension to the CH++ programming language for scene description and manipulation. A
scene is represented as a graph. A node in the graph represents some piece of information
about the scene such as an object, 4 location, a material or a scaling factor. When an action
(such as render) is applied to the scene graph, the graph is traversed in a depth-first fashion
described in [Wernecke 94| and the action is applied to each node in tam. Figure 13 shows
the Open {nventor scene graph used to represent Phoenix. A rendered depiction of a scene

graph from the UVW is shown in Figure 14,
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Figure 13: UVW Viewer Scene Graph Representation of Phoenix [Brutzman 941,

Figure 14: Visualization in the UVW.
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A second feature of Gpen Inventor is its scene description language [ Wernecke 94|.
"T'he scenc aescripticn provides a means of yepresenting scene graphs using readable text,
Objects defined using the scene description language and stored in files can be loaded into
the scene graph #1 vy vimne. Similarly, any portion of the scene graph can be written to a
file at run-time for later use or analysis. The ability to read and write portions of the scene
praph at o timee is espacially nseful in the UVW since it allows arbitrary objects to be

loaded into the seene graph for different missions.

o

2. Beonae Sinedntion and Visualization

a. General

The mest significant limitation of the iritial version of the UVW used
Guving thie thosis was she sowar model. Until recently UVW sonar representation was
limited to thee STIO00 eouar . nd only to the 25 ft by 25 ft CAUVR test tank. This
represeniaiion used a simplified planar two-dimensional trigonometric model described in
{Bretzman 91] to caleniate sonar returns based on a known AUV position within the tank.
Other objects piesent in fiwe scene graph were not represented in the sonar model. In order
to suppolh thv and other research, a more general sonar model representing arbitvary
wargets aind both the ST1000 and the ST725 sonars was needed.

‘e solution produced for this thesis is to use facilities present in the Open
{avenior package to simulate both sonars. One of the actions available in Open [nventor is
a ray-pick action (SoRayPickAction) [Wemecke 94]. To use the ray-pick action, the
stazung point of the ray and its orientarion are specified and the action is applied to the
scene graph. After application, the ray-pick action returns the point (if any) where 1t first
intersected an object in the scene graph to which it was applied. If the origin of the ray
corresponds to the location of a sonar, and the orientation of the ray corresponds to the

crientation of the sonar, then the distance from the origin of the ray to the first intersection
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with an object in the scene graph is analogous to the sonar range. Because of the short

ranges invoived (less than thirty meters), bending of the sonar beam is assumed to be
negligible [Brutzman 94, Such an approximation usually remains valid at longer sonar
ranges (hundreds of mieters) but depends on the sound speed profile of the environment
[Urick 83].

Since sensor modeling is handl-d in the dynamics module, a copy of the
scene graph must loaded into this module in order to use the ray-pick action to compute
sonar ranges. While the dynamics module uses a copy of the scene graph, there is no need
for the dynamics module to render it. By maintaining a copy of thc scene graph in the
dynamics module without rendering it. a general geometric sonar model has been
implemented without sacrificing real-time performance [Brutzman 96].

Because of the imperfect nature of sonar data an error model must also be
implemented in order to accurat ly represent a sonar. In the absence of empirical sonar
error data on the ST1000 and ST725 sonars, a uniform error distributton has been
implemented where the user can specify the maxtmum amount of error as a percent of the
range. The sonar range including error 1s computed for either sonar by the dynamics
module using the forrnula

Ray errar = € (rand(2) - DRy, + By, (Eq. 1)
where ¢ is Ihe maxynum eror percentage, rand(2) is 4 random number between zero and

two and &g, is the error-free sonar ange returmed by the geometric sonar model. As more

empirical error data becomes available, the sonar error distribution will be modified to
more accurately represent the pevformance of both sonars. A uniform error distribution can
be modified o provide an arbitrary empirical probability distribution in 4 straightforward

manner as explained in [Fishwick 95].

37



‘
()
P
o 4
(%)
]
| “ s
]
«
]
@ ]
8
¢
[
4

b. ST1000 Sonar

Because the ST1000 sonar is a one-degree conical (pencil-beam) sonar, its
representation using the ray-pick action is fairly straightforward and uses a single ray. The
location of the sonar head in world coordinates is computed using the position and
orientation of the AUV in world coordinates (data that is encapsulated in the AUV’s
homogeneous transformation matrix) and the position of the ST1000 in AUV body

coordinates. The homogeneous transformation matrix is defined as [Craig 9]

c(Y)c(8) c(y)s(B)s(d) —s(y)c(d) c(y)s(B)c(d) +5(0)s(d) x

H o= |S(W)e(0) s(y)s(8)s(9) + c(y)c(9) s(y)s(B)c() - c(8)5() ¥ (Eq. 2)
-5(8) c(9)s(¢) c(8)c(9) z
0 0 0 1

where vy, 6 and ¢ are the AUV azimuth, elevaiion and roll respectively, (x, y, z) 1s the
AUV position in world coordinates, and ¢(X) and s(X) are cosine and sine functions

respectively. Using the homogeneous transformation matrix the position of the ST1000

sonar in world coordinates is computed as

X, Xy
Yo | o il Ye (Eq 3)
z, L
1 1

wherte (x,, v, -, ) is the position of the ST1000 sonar head in AUV body coordinates,
The orientation of the ray representing the ST1000 is {found in a similar
fashion using the orientation of the sonar beam relative to the AUV and the rotation matrix
corresponding to the orientation of the AUV. Since the ST1000 sonar only has one degree
of freedom (DOF) (rotation about the z-axis), the unit vector representing ST1000 beam

orientation relative to the AUV can be computed using
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cos(W,) )
v, = sin(y,) (Eq. 4)

0

where v, 1s the bearing of the ST1000 sonar. The vector representing the orientation of the

beam unit vector in world coordinates 1s computed using the formula
V, = RV, (Eq. 5)
where K is the rotation matrix of the AUV given by [Craig 89]
c(y)c(0) c(w)s(0)s(d) - s(W)c(9) c(y)s(0)c(9) + 5(0)s(9)

R = 15(y)c(8) s(y)s(0)s(d) + c(W)c(®) s(y)s(B)c() - c(8)s(d) (Eq. 6)
~5(8) c(8)5(0) c(8)c(9)

This equation corresponds to the top left portion of the matrix of Equation 3.

Once the location of the sonar head and the orientation of the sonar beam
have been calculated in world coordinates, the ray-pick action is applied to the scene graph.
The distance from the origin of the beam to the point returned by the ray-pick action is then

calculated and error is added to the rosult using Equation 1.

c. ST725 Sonar

The ST725 sonar differs from the ST1000 sonar in two sighificant respects
that complicate its representation in the UV'W. First, the sonar beam of the ST725 isnot a
pencil-beam and cannot be adequately represented by a single ray like the ST1000.
Second, the data returned by the ST725 1s not simply a range to the nearest target but rather
a data structure representing the strength of the return at regular intervals out to the
maximum range, These issues are both dealt with by fusing the results of multiple ray-pick
actions,

Betfore describing the actual implementation of the ST725 sonar in the

UVW, it is important to understand the data structure returned by the ST725 and how it is

interpreted by the sonar manager. The data structure returned by the ST725 is a 32-byte
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sequence that is divided into 64 bins of four bits each. A bin represents the strength on a
scale from zero to 15 of the sonar retumn at a certain range. The range represented by a bin
is proportional to the maximum sonar range and can be approximated linearly using the

formula

R = l%f‘(m ) (Eq. 7)
where R, 15 the maximum range setting of the sonar and bins are numbered zero to 63,

The tactical-level sonar manager uses this data structure to compate a single
range for the 8T725. The range used is the shortest range whose bin value is above a
predefined minimum unless the value of a bin representing a longer distance is significantly
larger (strength difference greater than two). If this is the case the longer range is used.
This algoritnm is discussed in more detail in [Campbell 96].

The UVW implementation of the ST725 uses an array of 64 integers to
represent the returned data structure. The values contained in this array ave determined by
the results of 13 ray-pick actions applied to the scene graph. The rays for all 13 ray-pick
actions originate at the position of the ST725 sonar head which is computed using
Equation 2 with (x,, y,, z, ) representing the location of the ST725 sonar head in AUV body
coordinates (the positions of the ST725 and ST1000 sonars in AUV body coordinates is
shown in Table 2). The vector representing the orientation of cach of the 13 rays in AUV
body coordinates varies above and below the horizontal plane of the sonar. Ray
orientations are computed using

( cos(y,) ’

Vi = sin(y,) (Eq. 8)
tan (2i°-- 12°)

where y, is the bearing of the ST725 sonar and rays are numbered from zero to 12. This

cquation differs from Equation 4 only in the third term of the vector which allows the entire
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vertical sonar beam to be represented. It should be noted that v, is not normally a unit

vector., While conversion to a unit vector is a simple matter, the ray-pick function does not
require orientation specified by a unit vector, so the conversion is not performed in the
interest of computational efficiency. Once the orientation of the rays in AUV body
coordinates has been calculated, the orientation in world coordinates can be computed
using Fquation 5. A ray-pick action is applied to the scene graph for each of the 13 rays.
The range to the point returned by the ray-pick action is calculated, and the value stored in

the array of integers corresponding to the appropriate range bin is incremented by one.

Sonar Xp Yy, In
STI1000 2.875 -0.167 1.3333
‘ST725 2.625 -0.167 -0.3333

Table 2. ST1000 and ST725 Positions (ft) in AUV Body Coordinates.

After all 13 ray-pick actions the error free sonar range is.computed as the
range corresponding to the element of the array of integers with the highest value. If no
element in the array is greater than one, the error free sonar range is set to zero. Sonar error
is then added to the error free range using Equation 1. Although no profiling measurements
were performed on the source code, this operation appears highly efficient. The sonar
module (operating in series with the network communications and hydrodynamics model)
has no difficulty executing 14 ray-picks into complex scene graphs within the bounds of 4
ten Hertz update rate. Thus computational performance of the arbitrary geometric sonar

model is excellent.
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d. Visualization

Once vanges have been computed for the ST725 and ST1000 sonars,
visualization using the viewer is straightforward. The goal of sonar visualization in the
UVW is to enable the human operator to see the operation of both sonars. Visualization
ligs proven particularly useful for detecting and troubleshooting sonar control algorithms
since it provides the only intuitive verification that the sonars are being controlled as
intended. Numerous experiments conducted in the course of this research have shown that
sonar visualization is crucial to tactic diagnosis and mission rehearsal.

Sonar beams are represented in the UVW viewer using wireframe cones.
Nodes representing the sonar cones are placed in the portion of the scene graph
representing the AUV, Additional nodes are inserted into the graph to represent the
positions and orientations of the sonars relative to the AUV. In order to accurately depict
the pie-slice shape of the ST725 sonar beam, the vertical scale of the cone representing it
is increased by a factor of 12, They ure depicted as wire frames rather than solid objects in
order to preclude the sonar cones from obscuring other portions of the scene,

In addition to positions and orientations of the sonars, target range
information is depicted. 'This is accomplished quite simply by scaling the length of the
conies representing the sonar beams to the range of the appropriate senar return. If the ray-
pick sonar range is zero (no scene graph object was within range), itis important to visually
depict lack of contact as well. In this instance the sonar cone length is scaled out to the
maximum range, and for visual contrast the color is changed and the wireframe complexity

is decreased. The ST1000 sonar cone is red
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return is obtained. The ST725 sonar is correspondingly rendered in magenta or white. The

portion of the viewer scene graph representing the ST725 sonar is shown in Figure 15.
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Figure 15: Open Inventor Scene Graph Representing the ST725 Sonar,

C. IMPLEMENTATION AND TESTING IN THE VIRTUAL WORLD

The UVW was the primary tool for Phoenix software implementation and initial
testing during the conduct of this research. While it was often the case that in-water testing
was conducted concurrently with UVW testing, for safety and reliability no algorithms
were tested in the water prior to being tested in the UVW,

The ge aeral philosophy used during the conduct of this research was similar to that
of the research documented in [Marco 96]. Primitive functionality was implemented and
tested before attempting to implement higher level behaviors. While a variety ot low-level
issucs were not identitied until higher-level behaviors were implemented, these were the
exception rather than the norm.

The first issues dealt with were sonar control, target acquisition and tracking nsing
the ST1000 sonar. Once these behaviors were implemented, control modes were
implemented to allow Phoenix to maintain a commanded relative range and bearing from
a sonar target. These behaviors form the base upon which a great deal of this research rests.
The next step was to implement higher-level routines that used these sonar and control
modes to cxecute a torpedo-tube approach. These are primarily tactical-level issues and

involved path planning and command generation.
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Most strategic-level research relevant to this thesis was far enough removed even
from the tactical level issues that it could be conducted in parallel almost from the
beginning. The major goal of strategic level research was to simplify the mission-
generation process to such a degree that a user did not have to be a Phoenix expert to be
able to program a complex mission. Specification of location and type of recovery is one
aspect of this area of research. The most significant result of this research was a mission-
planning expert system for automatic generation of Phoenix missions. Much of this joint

rescarch is documentsd in [Leonhardt 96] with more detailed coverage later in this thesis.

D. IMPLEMENTATION AND TESTING IN THE REAL WORLD

Real-world implementation and testing occ' red in two parts: iimplementation and
testing on the vehicle's hardware and verification:  -irtual world results. Because Phoenix
does not actually use physical sensors and controls when missions are conducted in the
virtal world, it is necessary to verify the software’s interfuce with the actual vehicle
hardware before conducting in-water tests. Physical control of the sonars, reading and
filtering of sensor data, and polarity and response of control actuators all must be verified
by bench tests and (to a Iesser degree) by in-water tests. A more detailed discussion of this
topic can be found in (Bums 96].

Real-world verification of UVW results is conducted in much the same manner as
the initial implementation. Initial tests were intended to confirm the sonar control and
tracking behaviors, with subsequent tests verifying the station-keeping behaviors. Testing
of higher-level behaviors (including the full torpedo-tube recovery) were contingent upon
successiul jow-level behavior tests. A detailed discussion of real-world and virtual-world

test results is contained in Chapter VII of s thesis,

44



E. SUMMARY

This chapter provides an overview on how this research was conducted. The UVW
was of key importance to the conduct of this research. In order to facilitate its use, a general
sonar model was implemented to simulate the response of the ST725 and ST1000 sonars.
The sonar model was implemented by importing a copy of the scene into the UVW’s
dynamics module using the Open Inventor ray-pick function to simulate the sonar beam.
Visualization was also implemented for both sonars in the viewer portion of the UVW,

Subsequent to implementation of a general sonar model for the ST725 and ST1000
sonars, the UVW was used as the primary implementation and testing tool. With the
exception of hardware interfacing, all aspects of this rescarch were implemented and tested
in the UVW prior to attempting real-world tests. Implementation of Phoenix software was
conducted primarily in a bottom-up fashion with low level functionality being
implemented and tested prior to implementing higher level behaviors. Once functionality
was tested in the UVW, real-world tests were conducted to ensure proper hardware
utilization and response and verify UVW results.

The following chapter describes behaviors implemented at the execution level of
Phoenix software architecture to support recovery. Implemented behaviors include various
sonar control modes that can be used to locate and track objects in Phoenix environment, a
vehicle control maode for stationkeeping relative to an object being tracked, and e vehicle

control mode for physical entry inio 4 recovery tube.
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IV. EXECUTION LEVEL IMPLEMENTATION

A, IMTRODUCTION

This chapter discosses implementation of behaviors at the execution level that are
required during recovery. Since the execution level is primarily responsible for low-level
physical control and interfucing with the vehicle’s hardware, behaviors implemented at this
level must be fairly simple but robust. It is the responsibility of the tactical level to invoke
execution-level behaviors to carry out tactices that will (in turn) accomplish still higher-level
goals specitied by the strategic level.

The next section 1 this chapter details implementation of ST1000 sonar control
which is built upon the primitive behaviors described in [Healey 94]. Specific sonur
control modes implemented include a manual control mode, a forward-looking-scan mode
for collision avoidance. a target-scarch mode for locating targets specified by the tactical
leval and two target macking modes for use during station keeping, The third section
covers implementation of vehicle control modes for static a keeping relative (o a target.
Finally, implementation of a vehicle control mode for entry into the recovery tube is

presented in detail.
R, SONAR BEHAVIOR

{. Manual Control

The simplest and most obvious ST1000 bhehavior is “manual” control, This contral
mode responds to commands from the tactical level by positioning the sonar at specified
relative bearnngs. Manual control provides a means for the taciical level io completely
control the operation of the ST1000 sonar for target classification, obstacle detection or

nther operations that may be more suited to the STIO00 than the 1725, In addition manual




control is used during the final phase of the recovery to pgsition the ST1000 for distance
keeping from the side of the tube.

The current ST1000 bearing s maintained at the exccution level. When a bearing
is commanded, the ST1000 is stepped towards the commanded bearing at a rate of one step
per closed loop cycle. Step size for the ST1000 can be set to (.9, 1.8 or 3.6 degrees (a step
size of 0.9 degrees was used during this research), Once the commanded bearing is
reached, the sonar will remain at this relative bearing until a new command is received or
until the control mode is changed.

When under manual control the sonar will ping once per closed loop cycle (six or
10 hertz) whether it is being stepped towards the commanded bearing o has already
reached it This behavior makes it possible for the tactical fevel to control a manual sector
scan simply by alternating bearing commmands between the edges of the scan sector. Other
fairly robust behaviors can be similarly controlled by the tactical level,

Commanded sonar bearing is converted to an achievable bearing an { normalized to
a range of [0 .. 360) degrees before the sonar is actually scanned, This preveats the sonar
from stepping back and forth across a commanded bearing and simplifies determination of
scan direction, As an example suppose a bearing command of - 1.0 degrees is received by
the exeeution level, Using a step size ot 0.9 degrees and starting from 0.0 degrees, the sonar
is capuble of being scanned to -9.9 degrees or -10.8 degrees, but not - 10 degrees exactly.
The commanded bearing s therefore converted to -9.9 deprees (since that legal value is
closest to the actual commanded bearing). The roundoft tunction is defined as

Linteger ommand = 10.0
(dauble)| = - KUY ommana 2 10)) * ‘)]
\ /

- 2 {
Weommund  rownded - T - - (Lq ))

Stnee the current STTO00 bearing is maintained in the range of [0 .. 360) degrees,

the commanded bearing is normalized o 350.1 degrees so that the commanded and current
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bearings can be compared. The difference between the commanded bearing and current
bearing is then normalized to a range of - 180 degrees to 180 degrees. If this difference is
greater than zero, the sonar is scanned to the right; if itis less than zero, the sonar is scanned

to the left.

2. Forward Scan

For many Phoenix evolutions, particularly transits in flight mode, it is desirable to
use the ST1000 in a forward-looking scan pattern. This sonar operating mode has been
implemented and is automatically initiated whenever the execution level receives a
command that will require any of the following vehicle control odes: hover control,
waypoint control, open-loop lateral control, open-loop rotate control or any other kind of
thruster controt.

This forward scan pattern is primarily used for used for imnunent collision
detection and will trigger a reflexive mission abort as described in [Burns 96] if an obstacle
is detected within a certain range. The scan sector is of constant size and is centered about

sero deprees relative to the heading of the AUV, The defuult sector size is 30 degrees but

can be arbitrarily changed using mission-script commands which are listed in Appendix B.

J. Target Search

Since the STH000 is to be used for precision control relative to objects near Phoenix,
sonar-control modes are necessary for locating and tracking those objects. The
implementation of the ST1000 target-so . ch mode makes two significant assumptions: the
target has been identified by the tactical level, and the target can be discriminated from
back ground objects based on range. The first assumption relates to the tasks assigned to
the different levels of RBM, while the sceond relates to the type of environment expected

during station keeping refative to a sonar target,
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¢ first assumption (regarding target idenpfication) relates to suceessful

implementation of ractical level respousibilities including interpretation of sonar data and
classification of objects. Initial location of objects by the taciical level can rely on data
from the ST7295, the ST1000 (probably using manual control by the tactical level; or both.
Real-time object classitication using sonar bas been the subject of previous Phoenix
research and continues to be an area of significant interest {Brutzman 92, Campbell 96].
Once an objecthas been identified by the tactical level, the ST1000 targe t-search mode uses
the approximate range and bearing information to find it.

The second assumption (regarding target discrimination) is that the target s in a
relatively open area. This assumption allows the target search to rely only on the expected
range and bearing to the target rather than heuristics concerning the type of target. The
advantage of this approach is i generality. Use of heurisies for target identification
assuines that the vehicle has a ceriain amount of knowledge concerning the characterisiics
of the target [ Marco 96]. This knowledge must be present for every type of obiect that is
to be 1dentified. Basing target identification strictly on range and bearing information does
not require knowledge about the characteristics of the target and can therefrre be used to
locate any type of object. The disadvantage .5 that it is possible to incorrect y identify a
rarget when operating in a cluttered environment. An uncluttered environment is a good
assumption for an at-sea docking staiion, On the other hand torpedo tubes are o themselves
a highly cluticred environnment. Even m this case, however, successful maneuvering in an
unclutiered environment is an essential prerequisite to attempting more ditficult
ENVITONINCALS,

The method used o determimne scan direction tor a target search is the same as that
used tor mavual control. Each sonar return during the search is examined to determine it
ihe desired object has been detected. Sonar range and bearing information is used to

determine carth-fixed coordinates. The bearing and ranpge from the AUV 10 the object can
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then be computed and compared 1o the expected range and bearing to the target. In order
to simplify calculations, AUV pitch is ascumed to be negligible. The position of the

STIHO0O sonar head w1 world coordinates is then given by

)l
Xood ip
, = Hy |y, J (Eg. 10)

,‘
—

R
—

Soqaar sonu?

where (v,. v,) is the position of the ST1000 sonar head in AUV body coordinates and #.

is the two-dimensional version of Eyguation 4 and is given by {Kanayama 96|

Hy = singy) costy) y (Eq. 1D

0 0 1

(cos('w) —sin(y) x
|
l
{

Once the global position of the sonar haad has been determined, the ringe and bearing are
converted to world coordinates using

) s + Rcos(y )
‘ [ | = '\(’ Sonar CO\( p + ll’.\'unu/ ) (}:(] 1 l) )
Yo L vurn Yoo sonar VRSINOY + W00

where y 1s the AUV heading. y_ .., 1s the ST1000 relative bearing and & s the ST1000

runge.  The range from the AUV centroid to the target is then computed as

R o= %, o) VYo revara)” (Eq. 13)
and bearing from the AUV to the target is computed as
B = ARGy, o VA o ) (17} 14)
where atan(y.x) is a tunction returning an angle in the range of [0 .. 36() degrees. Equations
it} through 15 are equivalent to the equations defined in {Marco 964 o calculate the
location of Phoenix relative io a cylinder, This relationship between sonar range and
bearing and AUV range and bearing is shown in Figure 16,
Guce the range and bearing from the AUV ta the sonar target have been computed,

they are compared to the expected range and bearing to the desired sonar target as a
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discriminator, If the measured range is within five fect of the expected range and the

measured beiring is within 15 degrees of the expected bearing, the return is assumied to be
part of the desired target. Once these conditions are met, the sonar-control mode is
automatically switched to target track or target-edge track. Which mode to select is

explicitly specified by the mission-script command that initiated the target search.

AN
Range From !
Sonar lrue |
Sonar |
Bearing
/":
Range i
From AUV

True I
Beuring

Figure 16: Sonar and AUV Range and Bearing.
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Once the desired sonar target has been located, 4 sonar mode is required ro maintiin

contact with that target. T'wo such mocdes have been impleriented: a full target-track mode

and a target-edge-track mode. When using the tull target-track mode the sonar continually
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|” P sweeps back and forth across the entire sonar target, updating target range and bearing only

after the sonar has scanned off the cdge of the target.

ﬁ As the sonar wacks across the target, each range 1s compared with the previous
range. 1f the range is within five feet of the previous range, it is assumed to be part of the
same target. Because of the somewhat unreliable nature of sonar data, a return that does
q not meet the range criteria does not necessarily mean that the sonar has scanned off the cdze
of the target. ‘1’0 account for anomalous sonar returns, three consecative off-target returns
are required to initiate a sonar-scan reversal along with target range and bearing update.

When the sonar controller determines that the sonar has been scanned past the edge

of the target, range and bearing estimates are updated vsing averaging. As rhe sonar tracks

the target a range accumulator i1s maintained. Anomalous retarns that cannot be included

¥ S

in the target are not included in the range accumuiator. Sonar vangc to the target is simply
the average of the valid returns from the previous sweep. In addition to the range
accumulator, the sonar controller maintains the initial bearing of the current scan. The
bearing to the target is then computed as the bisector of the starting and ending bearings of
the current scan. Once the range and bearing of the tarpet from the sonar have been
determined, target range and bearing from the AUV are computed using Equations 1
through 14.

An illustration of the tarpet-track peometry is shown in Figure 17, The target-track.
control mode implementation s similar to the sonar control described in [Marco 96a] and
differs significantly only in two regards. First, sector width is not fixed but is determined
by the size of the target. Second, as with initial target detection, target identifisation is

based on range and bearing rather than target characteristics.
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Figure 17: Sonar Full Target-Track Mode Geometry.

In uddition to providing target range and bearing information, the target-track
control mode has one more benefit. The range and bearing data obtained during the full
target track oontains a large amount of information about a single object in ¢he world. Since
STT0Q0 raqze and bearing are parct of the state-vector, this data can be concurrently

analyzed by the tactical-level sonar module to aid in object classification.

5. Target Edge Tracking

Maintaining sonar contact with the target by scanning across the entire target has
one significant disadvantage: the time period between successive range and bearing
updates can be as much 4s ten seconds | Marco 96a]. This slow update rate can lead to
stuggish AUV response and navigational inaccuracy because of errors in the onboard

hydrodynamics mathemarical model described in the following section. In order to
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ncrease the target data update rate, a second target-tracking sonar mode has been
implemented. Rather than scanning across an entire object, this control mode attempis to
track only the edge of the target.

Once a target has been located using the target-search control mode, the sonar 1s
scanned left or right until it scans past the edge of the object. The target’s edge s identified
using the same algorithm as full target tracking. Again, once the edge is found the scan
direction is reversed. Rather than tracking across the target all the way to the opposing
edge, however, the sonar is scanned only until three returns that can be identified as part of
the target have been received. Returns are identified as part of the target in the same
manner as the full target-track mode. Once three tarpet returns have been received, scan
direction is reversed. The edge-track algorithm can be swmmmarized as a loop consisting of
four steps: scan off of the target. reverse scan direction, scan onto the target and reverse
scan direction. The smaller scan sector width results in target range and bearing update
rates that are much faster than those for full target tracking,

Since the sonar docs not track across the entire target, average sonar range and
bearing to the target's center cannot be corputed. Instead, range and bearing are computed
1o the edge being tracked. Range computation 1s accomplished in the same manner as with
the full target track. Normally the range computed will be the average of three individual
sonar ranges. Depending on AUV motion during the scan, however, the actual number of
returns included in the average may vary. The sonar bearing of the edge is simply the first
bearing from which a valid return was received if the sonar is being scanned onto the target,
cturn was reccived if the sunar 1s being scanncd oft
of the target. Again, once the range and bearing from the sonar have been determined,
range and bearing froni the AUV are determined using Eguations 10 through 14, Geometry

of the target edge-track mode 1s shown in Figure 1%,
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The target edge used for tracking is determined by the direction that the sonar is
scanned immediately after target detection. If the sonar is scanned to the right, the right
edge 1s used: if sonar is scanned left, the left edge is used. The sonar scan direction is based
upon the direction that the AUV will need to move to reach the commanded range and
bearing. If the current bearing to the target is less than the commanded bearing, the AUV
will need to move left. In this case the sonar is scanned to the left following target
detection. Choosing the tracking cdge in this manner is intended to prevent the AUV from

colliding with large targets because the wrong (i.e. fur) edge was used.

Sonar Scan‘ +Average Range 4 N
Sector ~7/
S /7 :
Computed;
True

Computec
True

AUV

Bearing

Figure .%: Sonar Target-Edge-Track Mode Geometry.
As stated previousiy the major advantage of the target-edge-track control niode 15
an increase in the range/bearing update rate over that of the target-track mode. Target-

edge -track has the disadvautage of not obtaining as much information about the target as

S6

)

N
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the full target-track. An inability to compute the center point of the target is one example

of this. Conceivably this disadvantage might be eliminated by simultuneous target-edge-

tracking and target-tracking using both the ST725 and ST 1000 sonars.
C. STATION KEEPIMG

1. Station Keeping Commands

Two commands were added to the execution fevel command language defined in

{Brutzman 94] to control station keeping relative to a sonar target: target-station and target-

edge-station. These two commands correspond to the two target- tracking sonar modes:
target-track and target-edge-track respectively. Both commands have the same parameters
and are interpreted in the sume way by the execution level. The sole difference between
these two comimands is the sonar control mode that will be initiated. Format and parameter
syntax details for both of these commands can be found in Appendix B.

Station keeping commands can have two, three, four. or five parameters, The four
and five-parameter versions are used to initiate a target search prior to station keeping,
while the two- and three-patameter versions dre used to change commanded range and
bearing from a target already being tracked for station keeping. The two-parameter
command specifies a commanded range and bearing, while the optional third parameter can
be added to specify u commanded vehicle heading. 1f no third parameter is present, AUV
heading will continuously point directly at the target. The four-parameter command
specifies an estimated range and bearing to the target for use during the target search und a
comnmanded range and bearing for station keeping. The fifth parameter specifics a
commanded vehicle heading, The difference between the comimanded bearing and the
estimated current bearing specified in the cornmand is used to determine which edge will

be used 1f target-edge-tracking is called for,
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Since execution-level target-track and target-edge-track sonar modes are initiated
automatically by the target-search sonar mode, it is impossible to switch between target-
truck and target-edge-track without initiating a new target search (i.e. by using the target-
station or target-edge-station command with four or five parameters). If the AUV is
maintaining station relative to a target’s edge and a target-station command is received, the
target-station command will be interpreted as an edge-station command. Similarly, an
edge-station command will be interpreted as a target-station command as appropriate. In
addition, if 4 two- or three-parameter station keeping command is received while the sonar
is not in target-track or target-edge-track mode, the station keeping command will be

ignored.

2. Commanded AUV Position and Control

The implementation of Phoenix’ target control involves the translation of the
commuanded range and bearing to global (x, y) coordinates. Basing station-keeping control
laws on vlobal coordinates allows the use of control laws similar to those used for hover
control as deseribed in [Burns 96}, Each time the sonar control updates the range und

bearing to the target, the global position of the commanded station is computed as

[ '\‘k cmmanid ] r \ t (‘('h(lillll rent )Ie!'ll'I'L‘IH + C‘,h( [ﬁf'lllll"lrlllll + l x() )I".,'nmnlurlll

. [V ¥ Wiy fa
Yo ommund vovd S"l(“: unu’nl)l"ruunn + Sl“(["rummum} + 180 )I\ rommoand

where .., and B, are the current and command bearings from the AUV to the

targetand R, and R, are the current and commanded ranges from the AUV to the

target, Itis important to note that control 1s based on relative range and beaning between

the AUV and tarpet. despite the conversion to world coordinates.
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The direction in which the AUV must move to achieve the commanded position is
computed as
[ = atan (y = Yeommand » X—xcommund) (E(l- ]6)

while the distance that the AUV needs to travel is computed as

d = 4/(\ - ‘trummam:i)2 + (y - .vcmnnmnd)2 (EQ' 17)

The forward and lateral distances relative to the AUV are computed as

dnn-rrack =d- COS(F“\U) I\Eq IR)
and
dcm.y.vflrack = d Si“(r - W) (Eq. 19)

respectively. The computed values for ¢,, .., and deross ract are used with y, u and an
estimate of ocean currentin the form (X, Veurron ) in PD control laws for stern propeller

rpm, and bow and stern lateral thruster voltage. The stern propeller rpm control law is

rpm = Prop, e = Prope, .. -Prop,,.. (Eq. 20)
where
Frop, pe = Kproyp hoverQun - iruck (Eq.21)
Propewrens = Kprop currensZcurrane - COSOW) + Y_r 00w SIB (W) (Eq.22)
and
Prop e = Kool (Eq. 23)
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The bow and stern lateral thruster voltage control law.; are

Vipgw = = 'I‘hrus!erww 3 'I‘hru.vtcr‘,.aw, + T,‘u'u.s'u’r_m,” —Thruster .o
and

Vipern = Thruster 4 Thruster, o, + Thruster - Thruster, .,
where

Thruslcrw,. = - klhru.\'{tr W(\V - w:,‘ommaml) - krllrus{w ot
'l"hl'lle(,’l'mnxt, = klhru.ﬂcr—ho\'udrm:.\’ truck
T}U'MSJ'L’I‘S".“_ = krhru:h‘r .\'n'uyv

and

7.hru‘\‘r["r('lurenl = kthru.\mr rurren[(‘trurrim : sln(w) - )‘L‘ul"'lll. COSW)

Values and units for PD control constants are listed in Table 3.

Constant Value Units

k 2000 | rpm /it

prop -hovir

6O00.0 | mpm-sees /11

k prop  current

Koo 240000 | rpm-sees /1
Kopuster —y 0,200 Volts / degrees
Kopuster 2.0 Volts-sees / degrees
klhru:ler -hover §'33%5 VOhS / “
k 20.0 Volts-sces / ft

sway
k 40.0 Yolts-secs / ft

thrusier - current

‘Table 3. Station Keeping PD Control Law Constants.

3. AUV Tracking

(Fq.

{Eq.

(Eq.

(Eq.
(Eq.

Because of the speed and asynchronous nature of sonar-based target-position

243

.29)

update rate, a method is required for computing Phoenix position and velocity between
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updates. Over the long term the best solution is probably the incorporation of an inertial
measuremeni unit (IMU) capable of providing position updates m real time |McGhee 95,
Bachmann 96]. For the present however, Phoenix does not have installed hardware that can
provide real-time navigatonal information, As a short-term solution, a simiple
mathematical model based on control inputs has been developed and incorporated to
estimate Phoenix position and velocity between target updates [ Marco 964,

The mathematical modet is a three DOF dead reckoning model that includes drag,
added mass and steady state surge. Because Phoeniv hardware includes a directional gyro
that directly provides yaw and indirectly provides yaw rate (by ditferentiation of yaw), only
the surge and sway equations of motion from [ Marco Y6at are used, The surge and sway
equations of motion are | Marco Y6a]

MG+ bl = 2av (O ) (bigg. 30y
ML)+ by O] = w08 oy (DY, (0] (Ey. 31)
where A1, and M, are the sum of mass and added mass in the x and 'y body axes. b, and 4,
are square-law damping coefficients. «, and o, are voltage-to-foree coetficients and v (1) |
v and v 00 are terms for the voltage applied to the propellers, bow lateral thruster
and stern lateral thruster. More specifically asynunetric voltage to the aft propellers is

accounted tor using |Muarco Y6a|

Lol ool 4 v
vy ) = b ‘“’(——)|—3L(’

V)] (Fqp. 32)

where v ) and v () are the voltages applied to the left and right propellers. Known

acean current is accounted for when converting body fixed rates to world rates:

XY X en ]__: 7cns(\y) -sin(\u)‘[ u(r) ] (liqA 14)
vir) v,_“m,“,) sin(y) cos(y) |\ v(r) g

[
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Values and units of constants used in the mathematical model are shown 1n Table 4.

Constant | Value Units
MN 21429 |t

M, 350.70 | Kg

h, 03.80 Kg/m

b, 31540 | Kp/m

o, .056 N/ Volts®

e 0OL18 | N/ Volis?

Table 4. Mathematical Model Constants | Marco 9Y64].

While this mathematical model is simple enough to calculate in real time and
accurate enough o compute reasonable navigational values, it is not perfect | Marca 964,
Target position updates based on sonar data remain the most accurate means of caleulating
the location of the AUV relative to a target. Since the purpose of the mathemarcal model
is to maintain AUV position and velocity information between sonar-based position

updates. itis reset each time a position update is received. In this way incremental crrors

in the mathematical model are not permitted to build up to unacceptanle values over time.

An important area for future work remains validation of AUV hydrodynamics
coefficients. Since a general ix-DOF hydrodynamics virtual world model for Phoenix can
run in real time, more accurate on-hoard dead reckoning is possible | Brutzman 94§,

D. FINAL RECOVERY CONTROL

The final addition to the exceution level in support of this rescarch was the

implenientation of a control mode to drive Phoenix into the recovery tube. As with the

target-tracking sonar modes and station keeping control mode, the recovery contral mode

assitmes that the position, artentation and size of the recovery tube has been deternined by
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the tactical level. The goal of the recovery control mode is to drive Phoenix a specified
distance into a tube v ile maintaining adequate clearance from beth sides.

Recovery corurol is initated by the tactical level once Phoenix is directly in front
of the recovery rube with its nose just inside. Upon recovery initiation the ST 1000 sonar
is switched to manual control and slews relative 75 degrees left. At the same time the
tuctical level sonar manager slews the ST725 sonar relative 75 degrees to the right. Phoenix

positioning relative o the tube at ihis point is shown in Figure 19

STHO00 Sonar RECOVERY TUBE

Final Centroid
Recovery Position

|

ST725 Sonar

Figure 190 AUV and Recovery Tube Layout at Recovery Controf Initiation.

PD control laws are then used to drive Phoenix into the tube. The mathematical
iodel deseribed in the previous seetion is used to estimate the distance travelled into the
tube while the STT000 and ST7235 sonars are used to keep Phoenix in the center of the tube
The control law for the aft propeliers is

1= K i Ky e Ve COSOUY Y SIOWD) R (B D)

where d s the remaining distancs into the tube as computed by the mathematical model.

The control laws for the bow and stern lateral thrusters are

View = - Chraster .+ Thruster,, . - Thruster - Thraster ., ., (Eq. 39)
and
wern + Thraster v Thraster, o Theaster o Theaster (Figy. 30)
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where Thruster,,,, and Thruster,,, .., are computed using Equations 26 and 29 respectively,

and
THOUSter, e = Kevusior - range Rs772580(T5%) R pi0008in(75°)) (Fyg.37)

and
Thruster = k

thruscer - sp. x'rJR-":"IOO(’Sin(’]SO) (Eq' 38)

speed
Where Ry gee 4nd Rypqs are the ST1000 and ST72S sonar ranges. These control laws are
very similarc to Equations 20, 24 and 25, differing primarily in the values of the control

constants and how the individual terms are computed. Values of control constants are listed

in Tau'= §.

Constant Value Units

2000 pin [/ {t

prop -range

k 60000 | mm-secs / ft

prop -surge

k 6600.0 | rpm-secs / ft

prop —currznl

k 0.60 Volts / degrees

thruster .y

Eoprustar - » 8.0 Vults-secs / degrees

j 8.0 Volis / ft

“thruster -range

I
Mgcuster  speed

40.0 Volts-secs / ft

k»,‘iru.rrer current 40.0 l V()I[S_SCCS /t[

Table 5. Recovery Control PD Centrol Constants.

. SEBIRIARY

This chapter cov s irrplementation of fearures ar the evecation iovel of Phoenix
~oftv.are o hiiec ture 1o support reccvery operations. Robust sonar behaviors are
i lemented including modes o support manual control, forward scanning, target scarch.

tareet fuackan: and taeget-edge waci g, These behaviors me used to sepport a Phoenix
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control mode capable of transiting to anc maintaining a commanded range and bearing
g g : .

from a sonar target. PD control laws are used to control motion relative to the target.
Additionally, because of the asynchronous trget-position update rate, a mathematical
model was developed to estimate Phoenix motion between sonat-based targei updates.
Finally, 4 control mode was implemented o actoally drive Paoenix into the recovery tube
once the vehicle obtains 4 position immediately in front of the tube. This control mode uses
PD control laws very similar to those used for station keeping. The STI(0U and ST725
sonars dare used to ensure clearance from the sides of the recovery tube throughout the
recovery evolution while the mathematical model is used to estimate forward uavel inito the
tube.

The following chapter of this thesis covers implementation of features at Phoerix’
tactical level that use the behaviors described in this chapter to control recovery.
Significant issues in that chapter are recovery path planning and command generation. In

addition, the mathematical structures used to implement path planning are discussed.
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V. TACTICAL LEVEL IMPLEMENTATION

A. INTRODUCTION

One of the primary responsibilities of the tactical level software is to use the low-
level functionality of the execution level in such a way as to accomplish the high-level
goals of the strategic level. Specifically, this chapter will cover Liow the tactical level uses
the edge-tracking sonar behavior and the station-keeping control available at the execution
level to support vehicie recovery in a tube.

The second responsibility of the tactical level that directly relates to recovery is the
identification and localization of the recovery tube. The ST725 and ST1000 sonars are the
primary on-board sensors upon which this task depends. Real-tiine sonar classification
using both of these sonars has been the subject of other research and 1s not directly
addressed here. For more informaiion concerning research in this area involving Phoenix
refer to [Brutzman 92] [Campbell 96§ and [Marco 96a]. A major assumption of the
rescarch of this thesis is that the recovery tube is at a known position and orientation.

The first section of this chapter discusses tacticai-level planning of the recovery
path. The mathematical structures used to implement recovery path planning are covered
as well as the plinning algorithm. The other major topic of this chapter is the gereration

of execution-ievel commands necessary for following the planned path.
B. RECOVERY PATH PLANNING
1. Transformations

«. Description
The mathematical structure used for recovery path planning 1s called a
trensformation. A transformation is & means of representing an object’s position and

ortentation in two dimensions (2D) and takes the form ot a state vector consisting of x

a7



position, y position and orientation. The coordinate system used for a transformation is

arbitrary and can represent an object’s global position or its position relat've to another
object. [Kanayama 96]

In addition to representing an object’s position and orientation, a
transformation can be used to represent discrete motions with 2D translavions and rotatious
specified in body-fixed coordinates. Finally, transformations are useful for defining lines
and circles. Lines are specified by a position (which can be any poini on the line) and an
orientation. This representation of a line is convenient for path planning becai‘ue itincludes
a direction which will generally represent the direction of motion along the line. The
transformation portion of a circle representation consists of a point on the circle aud the
tangential direction of the circle at that point. A circle requires a fourth term representing
the curvature of the circle. [K.-nayama 96] Representation of lines and circles using

transtormations is covered in more detail in the following section.

b. Operations

There are two operations defined for transformations: compositior and
inversion [Kanayama 96]. Composition is a means of combining two transformations.
Typically the first transformation represents a position and orientation, and the sccond
represents a motion or a relative position. The result of a cownposition is the final global
position of an object moved from a position (represented by the first transformation) by a
change in position and orientation (represented by the second transformation).

Composition 1s defined a; [Kanayama 96]

X ‘ X, i Xy 4 v cos(B)) - v, - sin(0) }
Vi 1ol oy T oy e sin(0)) + y, 0 cos{B)) (Eq. 39)
{0, 0, 0,+0,
04
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This definition leads to the definition of the identity transforrnation (e ). The identity

transformation is defined as (0, 0, 0)! and has the following result when used in
compositions | Kanayama 96]:
yoe = ¢e®y = q (Eq, 40)
The definition of ¢ leads to the definition of the inverse function. The inverse function for
transformations is defined by [Kanayama 96]
geq' =qleqg=c (Eq. 41)

and for ¢ = (x, y, 8 ! the inverse, ¢, is given by the equation [Kanayama 96]

—x- cos(8) -y - sin(6)
g = x-sin(0) - v cosB (En. 42)
-0
Transformation composition can also be used to generate smooth

trajectories in a plane by composition of a position and orientation with transformations
representing small discrete motions. The transformation representing the motion is
referred to as a circular transformation. A circular transformation is derived using the
length of the motion (1) and the amount of change in orientation over that length (o). The

circular transformation is computed as [Kanayama 96]

un(UL

—

Ag(lo) = I - u)s((l (Eq 43)

1

For linear motious (o -+ 0} this equation is undefined but can be approximated using a

Taylor expansion resultng in [Kanayama 96]
(1-a2/3+at/50 )i

AgULa) = | (120 glzat yaisol ol (lig. 44)

[
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A series of small discrete motions in the form of circular transformations is capable of
approximating a continuous smooth path. As with other discrete approximations of
continuous functions, smaller circular transformations will result in morc accurate path

approximation.
2. Line and Circle Tracking

a. Lines and Circles

As stated in the previous section, lines and circles cim be specified using
transtormations. Representation of a line takes the form (x, y, 8 )T where (X, y) 1s any point
on the line and ¢ is the orientation of the line. Since any point on the line can be used in
the transformation representing a hine, an infinite number of transformations are possible
for representaiion of a single line. For this reason representation of lines using
transformations is probably inappropriate if lines are to be compared. Since the recovery
path planning involved in this research does not involve comparison of different paths, the
inability to compare lines for equivalence does not pose a problem.

Representation of circles using transformations is only slightly morc
complex than representation of lines. Circle representation takes the form (x, v, 6, & "
where (x, v) is any point on the edge of the circle, ¢ iy the tangential orientation of the
circle at (v, v ). and « is the curvature of the ¢irele defined as | Kanayama 96]

x = 20 (Eq. 45)
ds

where s s the distance along the edge of the circle. Representation of civeles nsing

transformatt ms has similar adv-ontages and disadvantages as representasion of lmes. The

most signiiicant advantape is that by specifying a tangential orientation it 1s possible v

maphicitly represent the direetion of desired motion when raveling, along, a circular path

P

{e.esusing 6) The disadvantage is that there e an infinite number of transformation

)
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representations for a single circle. Again, since recovery path planning does not involve

the comparison of circles, this potential disadvantage is not relevant here.

b. The Steering Function and Smooth Path Planning

While line and circle segments can be uscd to represent a desired path,
representation of the path is only half the problemn. The second problem is actually steering
a vehicle (real or simulated) towards and along the desired path. This is the role of t-
steering function. The steering function is a continuous tunction hased on the vehicle &
current state and the desived path [Kanayama 96]. Vehicle state includes a transformation
to represcnt vehicle position and orientation and a fourth term to represent the curvature of
the vehicle’s path. The steering function is used to adjust the derivative of this fourth termn
to move the vehicle towards and along the desired path. The steering function is given by
[Kanay: ma 96]

&

5T ~{alx -k ) Hh) 8+ cAd) (Eq. 40)

where k and 8 are the vehicle’s current path curvature and orientianon, x, and 8, are the
vehicle's desired path curvature and ovicntation. Ad is the signed distance of the vehicle
flom the desired path and o, b and ~ are constants, Critieally damped values tor «, b and

¢ (vibues that wul result i at tiost one overshoot) are compiited as | Kanayama 96|

3 . .
a (Tiq. 47)
O )
3 -
h— (Eq. 48)
- :
| .
€ (Eq. 49)
where o o e arhitrary potitive constant corresponding to the vehiele™s desired
rexponsivencss e valaes of e will e fie vehicte to steer more sharply towards the
destred path v bile Tarper votuc wnli oo ea o other path bul o slower convergence with
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the desired path. Figure 20 shows an illustration of a path tracking problem. Ascan be seen
in the illustration, the steering function must be able to not only maintain the vehicle on the

desired path but steer the vehicle towards the path if necessary.

Desired Path

e

-

=

Vehicle 0
tigure 20: Steering Function Terms [Kanayama 96].
When a vehicle defined by (1, v, 8, « 7T is tracking a line defined by
(30 ¥o, 9(,)1‘. K, 18 zero, 0, is 0, and Ad 15 computed as | Kanayama 96]
(X = xg)sin(B) + (v - vy)cos(8,) (Eq. 50)

For the same vehicle tracking a circle detined by (v, vy 94, K ) K, 18 k,. B, and Ad are

computed as [ Kanayama 96|

8, = atan{sin(0,) 1 K, (x5 (cos(By) Ky (v v (Eq. 5D
and
A R () ’,,?'fi',',(?‘,’_),)__ Q;‘BL)LKE.LAFL,,fE')_ 2eostty)) (. 52)
1+ ﬁK(, (X xg) A+ sIn(Op)) + (K (Y = vg) - cos(8))’
respectively.

Circular transformations are usaed mong with the steering fuletion te

incrementally steer the vehicle along the desired path. At cach ileration the steering
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function is used to compute j—: The vehicle’s new position and orientation is then

computed as

Gnow = 9+ 8 (85, - 8] (Eq. 53)

where ¢ is the transformation representing the vehicle position and orientation at the
beginning of the iteration and As is the circular distance traveled in each iteration. The

updated value for x is computed as

di
Koo = K+ 2§ - As (Eq. 54)

Figure 21 shows the track of a simulated vehicle steered using this method. The desired

path of the figure consists of two line segments and a circle segment.

Desired Track Circle
(counterclockwise orientation)
Destred Trapk L'mc g Desired Track Line
(oriented left to right) / (oriented left to right)
e

~
s

Vehicle Starting Position
and Computed Path

Figure 21: Tracking to a Desired Path Using the Steering Function.
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3. Recovery Planning

a. Overview

While Phoenix is capable of six-DOF motions, recovery path planning is
conducted in two dimensions in order to allow usc of the methodology described above.
The use of only two dimiensions places two limitations upon recovery:  vehicle depth and
pitch control must be handled independently, and recovery is only possible in a horizontally
level recovery tube. Presently these limitations are not considered significant, however
future work may include the expansion of these algorithms to take advantage of Phoenix’
six-DOF capability to support recovery in tubes of arbitrary orientation.

The steering function derived above is intended primarily for vehicles
restricted to arbitrary tangential motions [Kanayama 96]. Such vehicles are typically
incapable of lateral motion but are assumed to be capable of following a path of unlimited
curvature. Since the steering function is being used only for motion planning and not for
motion control, the steering function remains appropriate for recovery path planning cven
though Phoenix is capable of nontangential motions. In this implementation a planning
vehicle that is restricted to tangential motions is used to generate a smooth path. The initial
position of the virtual vehicle 1s set to Phoenix” position at the start of the recovery
evolution while the mniual orientation of the virtual vehicle points divectly at the center of
the recovery tube (unless Phoenix is too close Lo the tube in which case it points directly
away from the center). The steering function 1s then used to drive the virtual vehicle
around and into the recovery tube to generate the recovery path. During the actual recovery
Phoenix must attlempt to stay on the planned path but is not himited solely to tangential
motions.

Aunother issue concerning the use of this methodology for AUV path

planning 1s dealing with unintentional sideslip. While it is reasonable to assume that ihe




velocity vector of a wheeled vehicle will be aligned with the longiiudinal axis, the same
cannot be said for vehicle’s such as Phoenix. It only are lateral velocity components
possible, they are in large part unavoidable. Figure 22 shows the geometry involved in this
type of holonomic system. In the figure, y represents vehicle heading, b represents vehicle
sideslip angle, and 8 is the velocity vector orientation, while u and v are components of the

velocity vector in vehicle coordinates.

X = north

A

vehicle longitudinal axis, x

vehicle velocity vector

vehicle position

P2\ » Y= cast
2, = depth

Figure 22: Holonomic System Geometry [McGhee 911

The lateral component of Phoenix velocity vector can be partially controlled
using lateral thrusters, A portion of the lateral velocity, however is dependent on the
tongitudinal veloeity and the tum rate. While rigorous modeling of this phenomenon can
become extremely complex, a fairly simple model can be used to predict sideslip augle.
This model results in the equation [McGhee 91]

B 2mt oy (Eq. 55)
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where m is the vehicle mass, p is the density of the medium, A is the lateral surface area

of the vehicle, v is the magnitude of the vehicle velocity (including sideslip), and ¢ is a
constant relating to lift forces generated as a result of sideslip. Using this equation, an
estimate of sideslip angle can be maintained as part of the vehicle state. Computer
sitnulation indicates that mathematical modeling of sideslip in this manner is particularly
useful during waypoint navigation [Davis 95].

Because of the low velocities and turn rates involved during hover and
recovery operations, the uncommanded sideslip angle is small when compared to
cominanded sideslip induced by the lateral thrusters. Since the larger termi dominates the
smaller, it is safe in the tube recovery scenario to ignore uncommanded sideslip.
Additionally, errors duce to miscalculation of sideslip of other six-DOF holonomic effects
due to added mass and other cross-coupled hydrodynamic drag forces are not allowed to
accumulate during execution because of the frequent recalculation of the AUV position

relative to the recovery tube.

b. Desired Path Planning

For overall recovery planning purposes, the arca surrounding the recovery
tube is divided into nine regions. }j',ach region corresponds to the Voronoi regic g of a
segment or corner of the tube [Kanayama 96]. A line or circle representing a desired path
is defined for cach region. With the exception of the line representing the final tube entry
path, the desired path circles and lines maintain a constant safe standoff distance of six feet
from the wbe. Additionally, all lines and circles are dirccted towards the opening of the
recovery tube. The transformation representations of the desired path lines and circles are
computed as soon as the position and ortentation ol the recovery tube are known. An

exatnple of tube regions and desired paths 1s shown in Figure 23,
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Figure 23: Voronoi-Based Recovery Regions and Path Planning Segiments.

The next step is determining which region Phoenix is in at the beginning of
the recovery evolution. Since the size, shape, position and orientation of the tube are
known, this is simply a matter of computing the ranges from Phoenix to the different
segments and corners of the tube and determining which is closest, After deciding which

region the AUV is starting the recovery from, the planning vehicle is instantiated and

As the planning vehicle leaves one region and enters another, the desired path for the new
region is used. The planning vehicle has left one region and entered another when the
distance from the vehicle o the corner or segment defining the current region is preater than

the distance of the vehicle to the corner or segment defining the new region. ‘This process
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continues until the planning vehicle has entered the tube. The path that the planning vehicle
travelled represents the planned recovery path for the actual AUV.

Again, since Phoenix is apable of nontangential motion, neither 6, in the

steering function nor @ of the planning vehicle necessarily correspond to the desired
orientation of Phoenix during the recovery. In fact, in order to facilitate continuous sonar
contact, Pheenix will normally point directly at the portion of the recovery tube upon which
it is taking station. This vehicle orientation policy has an exception in the final recovery
phase when the AUV will be aligned with the recovery tube (although 8, and o still bear

no corvelation to desired AUV orientation). Thus 6 and 6, pertain to the tangentiai

orientation of the track the AUV is to follow, while actual vehicle heading is detcrmined
by the relative bearing to the sonar tracking landmark. Precise six-DOF maneuverability
and control of posture using the nontangential motion capabilities of Phoenix permit such

a decoupling between vehicle track and vehicle orientation,

C. EXECUTION COMMAND GENERATION

Which corner to use for generated station-keeping commands depends on the
recovery region that the planning vehicle is in when the command is generated. The corner
must be visible from aunywhere within the region and the AUV sonar routines must be able
to recognize the edge. Since the target-search and edge-tracking sonar modes use range
information to recognize targets, there must be a significant increase in range as the sonar
scans past the comer. Figure 24 shows which corners are used for station-keeping

command generation for the different regions.
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Figure 24: Recovery Regions and Station-Keeping Corner Assignments.

..t predetermined intervals along the planning vehicle’s path, execution-level
commands are generated and stored in a file. Generated commands invoke the execution
level’s edge-tracking sonar mode and station-keeping control mode. Commanded stations
in each Voronoi region are in the form of range and bearing from the planning vehicle’s
current location to the appropriate tube corner that Phoenix’ ST 1000 sonar is most likely to
be able to discriminate. Interestingly, it must be noted that comraands for the entire
recovery are generated before any command is issued to the execution level. Upon
completion of the recovery through the appropriate Voronoi regions plan the OOD module
will dequeue and issue the generated commands one at a time.

The final command that is generaied is the recovery command. When issued to the

execution level, ths command will invoke Phoenix recovery control mode. The recovery
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command will be generated immediately after the planning vehicle has entered the
recovery tube opening.

An example of recovery planning and virtual world results are shown in Figures 25
and 26. Figure 25 shows the execution-level commands generated for use during the
recovery while Figure 26 shows an x-y plot of the recovery tube, the planned path, and the
actual path followed by Phoenix in a virtual world test. The running of this and other test

missions is discussed in Chapter VIIL.

#RECOVERY REGION 7

EDGE-STATION 6.231679 109.801091 6.231679 104.801091
EDGE-STATION 8.541297 115.850068

EDGE-STATION 9.411731 133.894357

#RECOVERY REGION 8

EDGE-STATION 11.636344 70.031182 11.636344 75.631182
EDGE-STATION 7.209702 101.266115

EDGE-STATION 5.999095 134.868091

#RECOVERY REGION 9

EDGE-STATION 9.332900 148.086638 9.332900 153.086638
EDGE-STATION 8.587834 171.619319

EDGE-STATION 7.367044 -168.706232 -135.000000

#RECOVERY REGION |

EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 3.240133 -174.693612 -135.000000

#FINAL TUBE ENTRY
ENTER-TUBE 7.499992 -135.000000

Figure 25: Generated Commands Based on a Recovery Plan.
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Figure 26: Planned and Actual Recovery Path Results from a UVW Mission.

D. SUMMARY

Implementation of features at the tactical level in support of recovery ii.clude
rccovery path planning and command generation. Recovery path planning utilizes a
mathematical structurc called a transformation which is used to represent vehicle position
and oricntation and discrete motions in two dimensions. The planned recovery path is
gencrated by a planning vehicle which is driven by a stecring function from Phoenix
position at the start of the tube recovery evolution.

The arca surre mding the recovery tube 1s divided mio nine Vorono: regions, cachi
of which has an associated desired path. As the planning vehicle passes through cach

region, the stecring {unction drives the vehicle towards the desired path for that region. A
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corresponding tube corner is chosen for optimal sonar discrimination while tracking. The
path traveled by the planning vehicle becomes the planned path for Phoenix during the
actual recovery maneuver.

At predetermined intervals along the planning vehicle’s path, execution-level
commands are generated and stored in a file. These commands are later izsued to tae
execution-level one at a time by the OOD moduie. The commands use the execution
level’s station-keeping behavior to follow the planned path. When the planning vehicle has
entered the recovery tube’s opening, path planning is complete. A recovery command is
then generated that will invoke the execution level’s recovery control mode for actual entry
into the recovery tube.

The following chapter discusses strategic level issues dealt with in the conduct of
this research. Research at this level focuses primarily on mission specification, planning
and generation. Specific issues include evolution of the strategic level and the development

of a mission planning expert syster.
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VI. STRATEGIC LEVEL 'IMPLEMENTATICN

A. INTRODUCTION

Since the strategic level of RBM is responsible only for high-level mission control,
its responsibilities regarding recovery are few. Essentially, the strategic level is respousible
only for deciding where and when the recovery is to take place, and what type of recovery
is required. This role is analogous to that of a ship’s commanding officer who specifies
what port to go to, when to go there, and whether to anchov or dock, but is not physically
involved in the actual anchoring or docking evolution.

Because of the limited role of the strategic level in recovery, research conducied at
this RBM level has been more general in nature. The most significant result has been to
simplify the process of strategic level mission planning and generation. The following
section of this chapter describes implementation of features at the strategic level that
facilitate this goal. The subsequent section describes the implementation of a graphical

expert system for mission planning ana automatic strategic-level code generation.

B. EVOLUTION OF THE S5TRATEGIC LEVEL

1. Mission Ceatrol

As stated previously the strategic level is structured as a DFA and consists of three
software pieces: the DEA, the mission controller and a set of primitive goals. The mission
controller is shown in Figure 27 implemented equivalently in Prolog and C++. Looping in
the Prolog implementation is conducted using the basic Prolog backtracking control
algorithm which tries to “prove” predicates {[Rowe 88]. When a mission is initiated, Prolog
iries 10 1ind a way to make the execute_phase predicate “true”™ by proving the
executc_phase and mission done predicates. If the execute_phase predicate is false, the

phase has not yet completed. In this situation Prolog will backtrack into the repeat
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predicate (which 1s always considered true). It then retries the execute_phase predicate.
This Joaping pattern will continue until the execute_phase predicate becomes true, at which
point the same process is executed for the mission_done predicate. When the
mission_done predicate is proven, ex=cute_mission is proven, and the mission completes.
Otherwise, Prolog tries to prove thie next_phase predicate. Which version of this predicate
can be proven is determined by sucsess or fatlure of the current phase. In contrast to the
Prolog mission controller, the C++ mission controller yses a typical imperative

programming language loop to obtain behavior equivalent {o that of the Prolog version.

=xecute mission :- assarta{current_phase(initialize)),

repeat, execute_phase, mission_done.
q execute_phasze 1 - current phase(X), execute_phase(X),
next_phase (X}, !.

mission_done :- current_phase(mission_abort).
mission_done ;- current_phase{mission_complete).
(a)
{
currentPhase = initialize ();
do {

if (currentPhase->complete ())

{
currentPhase = currentPhase->completeSuccessor;
currentPhase->initiate ();

}

else if (currentPhase->abort())

{
currentPhase = currentPhase->abortSuccessor;
currentPhase->initiate ();

}

} while ((currentPhase !'= missionAvort) &&

{currentPhase != xissionComplete)});

{b)

Figure 27: Strategic [.evel Mission Controller in (a) Pir. »g and (b) C++.
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2. Abstract Mission Conirol

Since initial Phoenix research was focused primarily on the strategic and execution
levels of RBM, early versions of the tactical level were greatly simplified and mainly
responsible for simply relaying commands from the strategic level to the execution level
[Marco 96b]. Consequently many tasks appropriate for the tactical level were first
implemented at the execution and strategic levels. Recent improvement' in the tactical
level now handle inany of the tasks previousiy divided between the sirategic and execution
levels [Leonhardt 96, Campbell 96, McClarin 96, Scrivener 96]. This redistribution of
responsibility among the levels of Phoenix RBM implementation has allowed strategic-
level functionality to concentrate solely on the high-level mission control for which it was
originally intended.

With the reassignment of many tasks to the tactical level, it became apparent that
further strategic-level simplification was possible by limiting the allowable phase ty'pes to
a few generic types. In fact this limitation was necessary since the tactical lcvel is only
capable of interpreting strategic-level commands from a predetermined set of primitive
goals [Marco 96b, Leonhardt 96]. As the AUV’s functionality eveives, new commands can
be implemented in tandem at the strategic and tactical levels by adding to the vehicle’s
primitive goal set. Present strategic-level primitive goals include transits, searches, globai
positioning system (GPS} fixes, dives and hovers. Because of the explicit defirition of all
possibie strategic-level primitive goals and the implementation cf a robust tactical levet, the
RBM implementation of Phoenix is now versatile and simple enough: to correctly perform
a wide array of missions [Brutzman 96].

As stated in Chapter I, the strategic level does not perform any numerical
computation [Bymes 96], but the exclusive maintenance of numerical data at the lower

RBM layers proved imipractical in implementation. This was due to the high likelihood of
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mismatches between the strategic level DFA and the numerical data file used by the tactical
level {Leonhardt 96]. The solution was to include numbers upon which a phase is
dependent (such as the focation of a search) in the command sent to the tactical level. The
tacticai level interprets the parameters as numerical values, but at the strategic level they
are just place holders within tiiz command. The implementation of phase parameters
eliminate< wie possib ity of lata file/DFA mismatch errors while maintaining the overall
non-numerical nature of ihe stra.2gic level. Figure 28 shows a strategic-level search phase
with phase parameicrs defined in Prolog. Tactical-level replies to strategic-level
commanid- are not tested so a sequence of strategic-level commands can initiate parallel
tasks at the tacticai level. Replies to ste.tegic-level queries on the other hand, are tested so
that exceution does ot proceed to the next €y or comraid unti} an appropriate reply to
the current query is recervad. As withi the Prolog version of the mission controller,
backir. cking is used to implement looping behavior so that a phase will continue to execute
until the execute piiase predicate is 1 :c. The phase depicied corresponds to the search

phase of the mission depicted in Figore 11,

execute_phase(rearch_1) :- vod(“sonar_search 20 45 37 ,Renly),
ond{*start__timer 250”7, Reply),
repeal, plase_conpleted(search_1).
phace_completad/searech 1) ;- ood(“ask search _complete”,Reply),
Reply:-=1, assesrta(succeed(search 1)) .
phase cowmpleted(seszcid_1) :- vod{“awk_time_out”,Reply),. Reply==1,

serta(abort (search_ 1)) .

next phase (search 1) - cucesedl (Bearch_1),
retract (curront phase(seaxch 1)),

wssartaicurrent _plinse (return_to_base) ) .
next_phase (gseaxrch_1) - alort (search 1),
retracr (current phase (search_1i)) .

\

, L e Y e
asserid(curreni_phase (go_shallow) ) .

Figure 28: Strategic Level Phasce Specified in Prolog.
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While the primary goal of recent strategic-level research efforts has been the
effective implementation of RBM in the real world [Brutzman 96], a collateral result has
been the standardization of the strategic level. The strategic level code now has a standard
form for a given type of phase. The only difference between two distinct phases of the same
type is the parameters. A template can therefore be created for each type of phase.
Strategic level code for a phase can be easily generated by inserting a label and phase
parameters into a copy of the appropriate phase template. The boldface portions of the code
fragment of Figure 28 indicate the phase label and parameters inserted into a sonar-search
template. Using templates to code the strategic leve] has a number of advantages. For
instance, the potential for syntactic programming errors is great when manually
programming even a simple mission. Such errors can be virtually eliminated by utilizing
templates. Furthermore phase templates make it possible to autoraate strategic level code
generation and eliminate manual programming at the strategic level altogether

[I.:onhardt 96, Brutzman 96].

3. Programming Language Issues

A decision was made early in the development of mission-control software for the
Phoenix AUV to implement the strategic level using the Prolog programming language.
Because of its roots in predicate calculus, one advantage of Prolog is that it is relatively
casy to use for specifying mission logic when compared to more common imperative
languages. As a result, programs written in Prolog are typically shorter than equivalent
programs written in functional or imperative languages. Additionaliy, programming of the
strategic level of the RBM is primarily a symbolic programming problem which is well
suited to expression in Prolog [Byres 96]. Finally, use of the Prolog inference engine is
powerful since the current state of the DFA can be represented implicitly by the current rule

that is being resolved [Bymes 96]. However, in the current strategic level implementation,
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the DFA state is maintained explicitly (using dynamically asserted facts) rather than
implicitly in order to improve code readability and ease of use. This approach amounts to
specializing the Prolog inference engine to a mission control engine or “mission centroller”
[Marco 96b].

A disadvantage of using Prolog at the strategic level is that it must interface with
the tactical level which is currently written in C. At present there is no standard Prolog
foreign language interface, so communication between the strategic and tactical levels is
dependent on the vendor and version of the Prolog compiler used [Quintus Corporation 95].
Portability of the software systein to new platforms is therefore a problem. Another
disadvantage as missions become more complex is that the size of the Prolog program
grows rapidly since each phase is programmed independently of all other phases. Finally,
because of its reliance on backtracking for control of execution, Prolog tends to run more
slowly than irnperative languages [Rowe 88]. To date this has not been a problem since the
speed at which the whole RBM system runs has been limited not by the speed of the
strategic and tactical levels, but rather by the speed of the execution level [Leonhardt 96,
Burns 96].

The advantages of using Prolog for Phoenix currently outweigh the disadvantages,
particularly given the mission planning expert system described in the following section.
However other programmung languages have advantages which may make them attractive
for use in the future. Two strategic levels equivalent to the onc described above have been
implemented using the Lisp and CLIPS programiming languages [Bymes 96]. However
these implementa'ions have proved to be much harder to write and understand.

More recently, research has been conducted into implementation of the RBM

and inheritance characteristics of C++ classes allow the definition of a generic phase class

from which more specific phase classes representing alt allowable types of phases can
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inherit, All phase class definitions together determine the vehicle’s operational
capabilities. A specific mission can be generated by instantiating instances of the
appropriate phase classes and using pointers to connect them into a graph representing the
strategic level DFA. As shown in Figure 27 this mission controller portion of the strategic
level is implemented using a loop that queries the tactical level about the status of the
current phase. If the current phase has either completed or aborted, the appropriate
transition is executed by following a pointer and initiating the next phase. If the current
pnase has neither completed nor aborted, the loop repeats without initiating a new phase.
Implementation of the strategic level in C++ directly addresses all three of the previously
mentioned disadvantages of the Prolog strategic level (foreign language interface, size and
speed). Since C++ can be directly linked with C functions, the systemi is inherently more
portable than the Prolog version. Additionally, with the exception of individual phase
instantiation and DFA construction, all code is contained within the phase class definitions.
Therefore, as mission complexity increases, the size of a strategic level source program
does not increase as rapidly as an equivalent mission written using Prolog. In the current
C++ implementation, the size of the source program will typically increase by two lines for
each additional phase (one line to instantiate the phase object, one line to link the object
into the DFA graph). On the other hand, the very conciseness of this approach tends to
present a barrier to easy understanding of the meaning and behavior of the vehicle in
gxecuting a misston so encoded. This difficulty is resolved by the development of a

mission-generation expert system as explained in the following section.
C. A MISSION-GENERATION EXPERT SYSTEM

1. Introduction

In most scenarios involving the use of Phoenix class AUVs for mine

countermeasure missions, operational naval personnel would be responsible for generation
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of mission control software. While these individuals can be expected to be experts in anti-
ine warfare, they are unlikely to have a high skill level in computer programminy,.
Instead, they will probably require an easy-to-use mission programming interface in order
to effectively and reliably specify an AUV mission. In this regard such individuals are
probably typical ot end users of autonomous vehicles in general. |Prutzman 96]

In order to facilitate ease of use, an expert system for programming Phoenix AUV
missions has been developed. This expert system consists of three distinct subsystems and
a graphical user interface (GUI). The first subsystem is used to automatically generate
missions by specification of ovcrall mission goals. The second subsystem is a mission-
specification facility that can generate arbitrarily complex missions phase-by-phase. The
last subsystem is an automatic strategic level code generator that creates Projog or C++
programs using results from either of the other two subsystems. The GUI, automatic
mission-generation facility, and mission-specification facility have been implemented
using Quintus Prolog version 3.2 [Quintus Corporation 95] and XPCE version 4 for X-
windows (Prowindows) [Wielemaker 94]. The strategic level code generator is written
using C and can either be invoked explicitly as a standalone application or automatically

from within the expert system itself.

2. The Automatic Mission Generater

a. Means-Ends Analysis

The intent of the automatic mission generator is to allow the user to generate
a mission simply by specifying the AUV launch position, rzcovery position and mission
objectives. A means-ends analysis algorithm is used to implement the automatic mission
generator. In general, means-ends analysis uses a set of start conditions, a set of desired
end conditions, and a set of operators to derive a sequence of operations that will eventually

transform the system from the start state to the desired end state [Rowe 88, Winston 92].
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In the automatic mission ;'enerator irnplementation of means-ends analysis, start conditions
are the vehicle launch paosition, end conditions are the mission objectives and vehicle
recovery position, and the operators represent all possible phase types. The automatic
mission generator applies the means-ends analysis algorithm to produce results similar to

those of Figure 29 which depicts a search mission.

Figure 29: Search Mission Automatically Generated ith Means-Ends Analysis.

In means-ends analysis, two mechanisms insure that a valid sequence of
operations is generated. First, each condition in the desired end state has one or more
recommended operators. for example if the desired end state is that a lecation has been
searched, the rccommended operator 1s to conduct a sonar search from the required
location. Second, cach operator has a set of required preconditions that must be satisfied
before the operator can be applied as well as a set of postconditions that result from the

application of the operator [Rowe 88|. Th  tcconditions for the sonar search of position
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P, for instance, might be that the vehicle is near position P and that the position must be

verified by a GPS fix. An obvious postcondition of a sonar search is that position P has
been searched. The means-ends algorithm uses these two mechanisms by choosing one of
the desired end-state conditions and attempting to apply a recommended operator, If the
preconditions of the recommended operator have not been satisfied, the algorithm attempts
to satisfy the preconditions by recursively applying means-ends analysis. If the
preconditions are satisfied in this way, the operator is applied. If the preconditions cannot
be satisfied. the next recommended operator is attempted. The algorithm proceeds in this
manner until all of the top level goals have been satisfied or until all recommended
operators have been exhausted. If the operators, precond " ions and postconditions are
correct, means-ends analysis is guaranteed to compute a valid sequence of operations for
accomplishing the desired goals [Rowe 88]. Since means-ends analysis is used to generate
a sequence of phases, any sequence of phases generated can be logically executed by the

Phoenix AUV and will accomrilish all of the goals specified.

b. Adaptation of Means-Ends Analysis for Phoenix

The means-ends analysis implementation of the mission-planning system
divides goals into two types. Top-level goals are those that are specified by the user while
intermediate goals are used during recursive applications of the means ends analysis to
accomplish top level goals. Intermediate-level goals appear as preconditions and
postconditions of top-level goals and other intermediate-level goals. At present the top
level goals implemented for Phoenix are position searches, position searches with specific
jouting, and entry into a recovery tube. As the function
software architecture evolves, high level goals will be implemented to take advantage of

new capabilities. Future high level goals may include planting explosive charges,

communicating with the controlling platform and taking still photographs.
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There are a number of characteristics of the solutions obtained using means-
ends analysis as presentad in [Rowe 88] and [Winston 92] that are not well suited to
planning for autonomous vehicles. The first is that solutions obtained through means-ends
analysis are linear in natire. A basic assumption of the algorithm is that operations always
succeed so there is no attempt to account for phase failure. This means that when the
mission DFA is constructed, another algorithm or heuristic must be used for failure
handling. The simplest and most obvious solution is {0 make the arbitrary decision that if
a phase fails, the mission aborts. However, if this simple heuristic is used, the resulting
DFA amounts to no more than a simple script that goes from one operation to the next and
stops whenever an operation fails. Similar soluations such as having the vehicle proceed to
its launch point or recovery point share this failing. Another possible solution might be
reattempt any failed phase. The obvious disadvantage here is that if a phase cannot be
successfully completed, the mission may not end until the vehicle exhausts its power
supply. The solution that was opted for is to always attempt to proceed forward with the
mission in the event of individual phase failure. If any phase fails, the succeeding phase
will be the next transit or hover phase to be executed had the phase succeeded (the
exception is the initial dive to operating depth). In this way if one or more phases fail, the
vehicle will still attempt to accomplish as much of the mission as possible. Transit and
hover phases were chosen as the phase failure successor type because, unlike other types
of phases (such as searches and GPS fixes), transit and hover phases never directly rely on
their predecessor phase. A graphical representation of the DFA resulting from the means-

ends analysis solution of Figure 29 is shown in Figure 30.
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The second disadvantage of means-ends analysis is that operators are
implicitly prioritized by their order of appearance in the means-ends analysis specification.
For instance if the operators search position P and plant an explosive charge at position P
are specified in that order, the solutions obtained by means-ends analysis will always apply
the search position P operator as many times as it can before it attempts to appiy the plant
an explosive charge at position P operator. If mission goals included a search of position
(X1, ¥1» 21), an explosive charge plant at position (xy, yy, 1), a search of position
(X5. ¥7, 23), and an explosive charge plant at position (X, ¥, Z»), the means-ends analysis
solution will conduct both searches, then plant both explosive charges. Whiie this may be
the type of behavicr desired, if the transits between (X4, ¥y, z1) and (x5, y5, Z,) cover a
significant distance. missions of this sort become highly inefficient. The problem of
operator prioritization is only a problem for operators intended to accomplish top-level
goals since the ordering of intermediate-level goals do not significantly effect a mission’s
efficiency. The solution tc¢ this problem is the implementation of a single operator that
accomplishes ali top-level goals. What type of top level goal to accomplish is specified by
the parameters of the operator. Different sets of preconditions and postconditions are then
defined for each form of the single operator. Since only a single operator is involved,
prioritization is no longer an issue. Figure 31 shows this operator definition for the
accomplishment of searches and explosive placements (to date, the search operator has

oeen fully implemented in the vehicle, but not the explosive placement operator).
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$Recomnmended operators for goals. Format is
$goal, operator

recommended (top_level_done(X), handle_top_level(X)).

%Preconditions for the application of operators
iFormat is type of operator, precondii ions that
%¥rmust be true list, and preconditions that
gmust not be true list

precondition(handle_top_level ( (searched, X, Y, 4]},
[position(X,¥,2)],
fexplosive_ready, gps_fix_regquired]).
precondition(handle_top_level([charged,X,Y,2]),

[position(X,Y,2),explosive_readyl],
(gps_fix_requiredl).

%$Postconditions for the application of operators
%Add postconditions are true after application
$Delete postconditions are false after application

addpostcondition(handle_top_level ([(gearched, X, Y,Z]},
[top_level_dwne([searched,X,Y,2]).
gps _fix_requiredl]l).
deletepostcondition(handle_top_level({searched X,¥,2]), []).
addpostcondition(handle_rop_level{[charged, X,Y,2]),
[top_level_done{[searched,X,Y,2))1]).
deletepostcondition (handle_top_level ( [charged,X,Y,2]),
[explosive_readyl) .

Figure 31: Top-Level Operator Definitions for Search and Explosive Planting Goals.

One final potential shortcoming of means-ends analysis is that while the
initial solution obtained is guaranteed to be valid and complete, more optimal solutions
may exist that can only be produced through repeated applications of the means-ends
analysis algorithm. A possible solution te this shortcoming might be to obtain all solutions
possible using means-ends analysis, compare them for efficiency, and use the most
efficient one as the final solution. Another solution is to again obtain all possible solutions
but allow the user to choose the one to be used. A slight modification of the second solution

is currently used in the system. After a user specifies th2 vehicle’s launch position, mission
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goals and recovery position, the means-ends analysis algorithm is applied to obtain a
solution. The solution is displayed textually in a window similar to the one in Figure 29
and 2 geographic plot of the mission path is displayed on an area map. The user is then
given the option of accepting or refusing the mission. If the mission is refused, the means-
ends analysis algorithm is applied to generate another solution. Using this approach the

user can cycle through all obtainable solutions one at a time prior to selecting one.

3. Phase-by-Piiase Mission Specification

Whiie means-ends analysis provides a simple method for generating fairly complex
missions, it is incapable of generating missions that take full advantage of the DFA
structure of the straregic level. Therefore a facility has been develeped for explicit
specification of individual phases that can be linked together more or less arbitrarily into
an executable mission. The mission-specification facility queries the user for information
for each phase and uses information for all input phases to construct a raission. Information
for each phase includes a phase label, the type of phase, phase parameters, the label of the
follow-on phase upon successful completion. and the label of the follow-on phase upon
phase failure. The expert system GUI insures that the user enters the appropriate
information at the appropriate time. For instance, if a transit phase is being entered, the
system will not ask for search-related information. The GUI also eliminates many data
entry crrors by the use of clickable maps, push buttons, clickable menus, and sliding scales.
Sample GUI data entry windows are zhown in Figures 32 and 33. Figure 32 shows the main
window which is used for launching system facilities and visual entry and display of
geographic information. Figure 33 shows windows for specifying the type of phase to be
entered and phase related data for a transit phase. Data entry windows for other types of

phases are simiilar to the one shown in Figure 33 but differ in the specific data entered.
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Since manual phase-by-phase specification of a mission can be much more
corplicated than specifying a mission using means-cnds analysis, a rule-based system has
been implemented to insure that only valid missions a-e generated by the system. This
requires checking 2ach entered phase for validity in several ways. The phase mu:t not be
missing any parameters, vehicle physical limitations must be observed, and the specified
locations must be within the designated operating area. This check is conducted as each
phase is entered. Detected errors are immediately reported and the user is given the
opportunity to modify the phase. Y no zrrors are detected, the phase is accepted. Later, a
second check is required to insure that all of the phases together make a valid mission. In
general, many phases are inherently dependent upon their predecessors, so it is possible for
2 set of individually valid phases to constitute an invaiid mission. For insiance, a location
cannot be searched until the vehicle has transited to the location. Errors of this type include
incomplete missions, loops in the DFA, invalid phase sequences etc., and are detected by
parsing with a second nule base immediately prior to mission code generation. Again
detected errors are reported, and the user is given the opportunity 1o modify, delete or
specify phases. Sampie error reports for individual phase errors and riission errors are
shown in Figure 34. If no errors are detected the mission is accepted and executable code
is generated. By error checking both individual phases and the mission as a whole, the
phase-by-phase mission-specification facility can insure that any specified mission is valid

and achievable by the vehicle.
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The phase by phase nussione-spectfication facility 1s mtended tor users who are
Famitliar with the structure of the RBM strategie level Although the G and two rule-
hased systens prevent invahid misstons {from being specified, they do not msure that the
spectbied misston will accomplish its mtended goals. While the means-cnds mission
ceneration faciliny s soal driven. the phase by phase mission-spectfication tacility is not.
Since vahdity of amisston depends anly on whether or not the mission is possible, 1t is not
difficult to specits o vahid mission that searches the wrong location, transits to the wrong
end point.or generally does not do what 1tis supposed to. For this reason, it s important
thatauser know exactly what the mtended mission is supposed 1o accomplish before using,

the mission specilication tacility,

101




To assist in phase-by-phase mission development, a tabular representation of the
mission is displayed as it is entered (Figurc 35). The mission is represented as a state table
listing each phase with the label of its follow-on phase upon successful completion and the
label of its follow-on phase upon failure. While it might be argued that a graphical
representation of the DFA (such as in Figures 11 and 30) is more intuitive, graph
complexity increases far more rapidly than that of a state table as mission size increases.
For arbitrarily complex missions, a state table is more concise and conveys the same

information as a graph.

Figurc 35: State Table Summary of a Mission Specified Phase-by-Phase.
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4. Automatic Code Generation

Both the means-ends mission generator and the phase-by-phase mission-
specification facility produce output in the form of .1 data file. This intermediate data file
is not an executable strategic level mission but rather is an annotated state table description
of a strategic level mission. Each line in the data file describes exactly one phase by
specifying (in order) the phase type, the phase label, the label of the follow-or: phase upon
success, the label of the follow-on phase upon failure, the amount of time that the phase has
to succeed, and the phase parameters. This output file format actually constitutes yet
another RBM missioni-specification language. Because of its high level of abstraction, the
mission-specification language is programming-language independent and (together with
the previously discussed phase type templates) enables automated executable code
generation in any language for which phase templates have been created.

To date, phase type templates for the have been created for Prolog and C++.
Concurrent with tempiate development has been the construction of programs to generate
executable code for missions specified using the mission-specification language. Figure 36
shows an example of a mission specified with the mission-specification language and the
automatically generated executable code. Code generation programs are written using the
C programming language and can be run as standalone programs or invoked from within
the mission planning expert system. Standalone execution can be used to generate a
mission based on a user-specified data rile which can be aufomatically or manually created.
Frem within the mission planning expert system, executable code is generated for a mission
specified phase-by-phase or by means-ends analysis. While the mission planning system
as a whole is dependeni upon availability of Quintus Prolog and Prowindows, the
programming language independence of the mission-specification language allows this

portion of the system to be ported to virtually cny platform.
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#Mission Specification File Format

(a) Mission-specification Language Example

#phase_type phase_lubel completion_successor abort_successor [parameter:)
depth_change dive transit_to_op_area mission_abort 30 3

waypoint transit_to_op_area hover 1 go_shallow 500 15 30 3
hoveipoint hover_1 search_1 go_shallow 500 20 45 3 134
rotace_sonar_ search search_l return_to_hase go_shallow 200 20 45 3
hoverpoint retuzn_to_base surface mission_abert 250 64 30 2 222
depth_change surface mission_complete mission_abort 150 0
depth_change go_shallow return_to_base mission_abort 100 1

execute_phase(hover_1} :- nl, printsc(*PHASE hover_1 STARTED. '},
ood( 'hover 20 45 3 135" ,Reply),
printsc(‘hover 20 45 3 135!"),
ood('start_timer 50Q0',Reply),
repeat shase_completed(hover_1).

cod{( 'ask_hoverpoint_reachec’,Reply}. Reply==1,
printsc(*HOVER COMPLETE. '},
asserta(succeed(hover_1)}.

phase_completed(hover_1l)

phase_completed (hover_1) ;-  ood('ask_time_out’, Reply), Reply==1,

anserta{abort (hover_1)).

next_phase (hover_1) :- sucreed{hover_l),
retrast (current_phase(hover_1)),

asserta|current_phase({search_1)).
next_phase (hover_1) ;- abort{hover_1l;.

retract (current phaselhover_1i)},
asserta(current_phase({go_shallow)}.

(b) Automatically Generated Prolog Code for One Phase

printsc('PHASE hover_1 ABORTED DUE 70 TIME OUT.

Phase *
buildMissionGraph ()
{

Hovar *phhover_l1 = new Hover (20,45,3,134,500);

phHover_1->specifySuccessors tphsearch_1, phgo_shallow);

} 7/ buildMissionGraph

f{c) Automatically Generated C++ Code foxr One Phase

Figure 36: Sample Mission Defined with (a) the Mission-Specification Language,

(b) Automatically Generated Cade in Prolog and (c) C++.




D. SUMMARY

This chapter describes recent modifications of the Phoenix strategic level and the
implementation of a mission planning expert system. Recent developments in the
execution and tactical levels of the RBM implementation on the Phoenix AUV have
facilitated signiticant improvement at the strategic level as well. These improvements
include the simplification of the strategic level through redistribution of responsibilities
among the three RBM layers, definition of & finite number of phase types, the incorporation
of phase parameters, and the development of phase templaies. Additionally, the strategic
level has been equivalently implemented in C++ and Prolog.

These improvements in the strategic level have in turn facilitated the development
of the mission planning expert system. The system uses means-ends analysis to generate
missions based on goals specified by a user. The sysiens 2lso has a facility for specifying
missions one phase at a time. This facility incorporates a rule-based system to insure only
valid missions are generated. Finally, automatic code generation programs were developed
that use the phase ternplates to translate the output of the other two facilities into executable
Prolog or C++ code.

The following chapter describes experimentation in support of this research.

Attention is paid both to cxperimentation using the UVW and the physical vehicle.
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VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter discusses the experimental results of this research. The two major
topics are virtual world results and real world results. While features were implemented in
the virtual world one at a time (primarily in a bottom-up fashion), the focus of this section
is on final results once all of the individual features were successfully implemented and
integrated. This section consists therefore of recovery contro} results and mission planning
system results. Mission planning expert system results are treated separately because of the
broader nature of that research.

Since not all aspects of this research have been verified through in-water testing,
simulation results are covered in more detail. As stated in Chapter HI, the first area of in-
water testing was hardware control verificaifon. While all other in-water testing relied
upon proper software/hardware interaction, this aspect of testing was not directly relevant
to the research itself. Success of this aspect of testing is however shown implicitly by other
test results. The primary focus of the in-water tesi results portion of this chapter is the
execution-level behaviors upon which recovery relies. In addition in-water results of

missions generated using the mission-planning expert system are covered.
B. VIRTUAL WORLD RESULTS

1. Recovery Control Resuits

UVW tests indicate that the low-level behaviors described in Chapter I'V are
capable of controiling Phoenix with sufficieni precision o conduct recovery in a smal
tube, Further, the path planning routines described in Chapter V proved capable of
planning an acceptable recovery path from virtually any location into a tube of known

position and orientation. Figures 37 through 42 show the planned path and the actual path
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followed by the vehicle during UVW test recoveries conducted using tubes of various

orientations. Missions for these tests were generated using the mission-planning expert
system and use the C++ version of the strategic level. The generated mission consists of
three phases: dive to depth (three feet), transit to a point near the tube (-2, -15), and recover
in the tube (located at (0, 0) at the orientations specified in the figures). Running the
missions in the UVW requires loading the Open Iriventor description of the desired tube
(located in the viewer directory and named tube(anglel[negl.iv for these tests) into the
dynamics and viewer modules of the UvW. Occasional deviations between the planned
and performed paths are attributable to anomalies in the edge-tracking behavior when
simultaneously transitioning between voronoi regions and sonar edge-tracking targets.

These anomalies are discussed in more detai! later in this chapter.
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Figure 37: Planned vs. Actual Virtual World Recovery in a Tube Oriented North.
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Figure 42: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northwest.
The most significant aspect of these figures is that Phoeniy transited to a point,

planned a recovery path into a tube of arbitrary but known posture, and used automatically
generated commands that relied on fow-level sonar tracking and station-keeping behaviors
to follow the planned path into the tube. There are however anomalies that require
explanation. Most notable are the excursions from the planned path when rounding corners
in Figures 40, 41 and 42. These excursions result from Phoenix being unable to distinguish
the appropriate corner with the ST 1000 sonar and therefore taking station on the wrong one.
When transitioning fromn the back of the tube to the side, the coener upon which Phoenix is
to take station is the opposing back corner. Diepending on the vehicle’s orientation, this
corner may he masked by the near corner when Phoenix nears the corner. When this
occurs, the near corner will be mistaken for the opposing corner resulting in an excursion
from the planned path similar to the one in Figure 41. When rounding the tube’s front

corner, a similar phenomenon can result where Phoenix mistakes the near corner for the
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opposing comer upon which it intends to take station. This will result in planned path
cxcursions as depicted in all three figures. It is also possible for Phoenix to mistake the far
corner for the near resulting in a planned path excursion that will bring the vehicle closer
to the recovery tube. This type of planned path excursion is significantly more dangerous
than excursions depicted in Figures 40, 41 and 42 since the vehicle may actually strike the
tube. Excursions of this sort were encountered only during tests in which improperly tuned
control constants resulted in underdamped vehicle response. In these tests it was not
uncommon for Phoenix to overshoot an intended station exposing a corner that was
supposed to be masked to the sonar. A potential solution to this problem might be to
generate a desired range and bearing to the center of the tube rather than to a corner of the
tube, thereby allowing OOD module to choose the most appropriate corner for station-
keeping (based on Phoenix current position relative to the tube) and generating the
appropriate execution-level command on the fly. Further testing may reveal whether such
additional precautions are necessary.

A second anomaly is the unreliability of recovery from starting points directly in
front of (or behind) the recovery tube. When directly facing the onening of either end of
the recovery tube, there is simply not enough cross section for the ST1000 sonar to
consistently locate and track a comer of the tube. UVW tests indicate a repeating pattern
of locating a corner (sometimes but not always the correct one) and losing track of it almos:
immediately. This problem does not exist if the back portion of the tube is enclosed (as
must be the case for an actual recovery tube). For the front portion of the wbe, the simplest
solution may be to increase the sonar cross section by adding a lip. Further testing is
required to determine the size of the lip required and to make sure the lip does not interfere
with tracking of the corner {from other directions.

Finally, the figures indicate that Phoenix is slightly to the right of the tube’s center

when entering (although clearance was maintained on both sides throughout the recovery
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evolution). This is a consistent aspect of all test runs. The apparent reason for this result
is that neither the ST 1000 nor the ST725 is placed exactly on the vehicle’s centerline. This
is not accounted for in Equation 37. Slight modification to Equation this equations to the
following is the most likely solution.

Thruster .. = Kppusrer - range((Rsr725510(75°) + [y 57925]) = (Rer100080(75°) + |ysrio0o)))  (Eq. 56)
Where ygrq,s and ygr 40 are the Y coordinates of the ST725 and ST1000 sonars in AUV
body coordinates respectively.

Another issue that should be noted concernirg UVW testing and the results shown
in Figures 37 through 42 is the issue of contro} constants for the station-keeping PD control
laws. UVW testing has shown that improper PD control constants will result in a failure to
accurately follow the planued recovery path. Thruster and propeller PD constants must be
tuned in such a way that lateral and longitudinal responsiveness are the same. Failure to
properly rune control constants will not preclude reliable recovery, but will result in
mediocre planned-path following such as that which occurred in the test depicted in Figure
43. Tt should also be noted that control constants used in the (osts depicted in Figures 37
through 42 were tuned in the UYW. In-water testing described in the foliowing section
required retuning of the control constants. Control constants shown in Table 3 are real-
world constants. This disparify between the virtual and real worlds highlights possibly the
most important arca ot near-term future work: real-world validation of the UVW.
Adjustment of coefficients of the UVW hydrodaynamic model to accurately retlect the
actual hydrodynamic characteristics of Phoenix is essential to long termr, software

development nsing the UVW.
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Figure 43: Recovery with Poorly Tuned PD Control Constants.

2. Strategic Level and Mission Planning IExpert System Results

[n addition to the real world and UVW an interactive standalone ood_test program
has been developed for strategic level testing. This program allows a human acting as the
tactical level QOD to manually respond to strategic level queries by querying a human
rather than the tactical {evel. Logic and sequencing of the strategic level (the structure of
the DEFA) can thercfore be evaluated without the AUV or UVW. In Figure 44, the vod _test
program is used to debug an automatically generated Prolog mission corresponding to the
mission of Figure 1. By utilizing the standalone strategic level and UVW for code
development and nitial testing, and in-water testing for final testing and validation, it has
heen passible to rapidly and simultaneously develop and implement new features at all

three layers of the RBM architecture [Brutzman 96]
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Begin Initialization '
00D Received Command: initialize @
00D Received Command: start_timexr 120
00D Received Command: ask_initialized ‘
?- yes
Initialization Complete &
Phase Completed :
Change Depth to 3 feet
Depth Reached
Phase Completed .
Transit to 40 70 3
Waypoint deached
Phase Completed
Hover at 20 60 3 270
00D Received Command: hover 20.000000 60.000000 3.000000 270.000000
Q0D Received Command: start_timer 300
00D Received Command: ask_hoverpt_reached ‘
?- yes
Hover Point Reached
Phase Completed .
Conduct Sounar Search at 20 60 3 270
00D Received Command: sonar_sear th 20.000000 6¢,600000 3.000000 270,000000
00D Received Command: start_timexr 180
00D Received Command: ask _sonar_ search_complaete
o
?- no
00D Received Command: ask_time _out
?- yes
Timer kxpired
rhase Aborted
Chanue Depth to 0 feet
D &
bepth Reached
Phase Completed
Transit to 50 20 0
00D Received Command: waypoint 50.000000 20.000000 0.000000
00D Recelved Command: start_timer 300
00D Recelved Command: ask waypt_ reached
Y- yes
&
Waypoint HReached
Phase Completed
Hission Complete
Figure 44: Standalone Testing of a Mission Using the ood_test Program.
Strategic-level test missions for Phoenix have been generuted in both Prolog and
C++ using manual programining, the mission-specification language and automatic code-
peneration prograns, and using the entire mission planning expert sysiem. The results of
e
these tests have been predictable and correct.
Figure 45 shows a graphical plot of a C+ 1 mission created using the means-ends
analysis mission generation facility. Goals for the mission were to conduct sonar searches
&
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from two locations (one with specific routing to the search point). When execcuted, the

mission conducted both sonar searches. obtained GPS fixes to verify the search positions,

c@=

e , . ®
classified detected objects, planned a safe path around detected obstacles (object
e . . %
classification and path plainning were conducted at the tactical level), and proceeded to the :
designated recovery position. The need for GPS fixes to verify search positions {as well as
the initial dive to operating depth) were not specified by the user, but were exccuted
because of the mea. s-ends anaiysis preconditions and postconditions for the sonar search
op ~ration.
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Sirplifications made in the structure of the strategic level proved userul. A Pioicg
mission using the new strategic level format 1s approximeately onc third as long as an
@

cquivalent program manually prepared using the {orrat in pluce prior to il simrhilicaiions
deseribed in this paper [Leonhasdt 96]0 Tewplates and avtomatic code generation proved

reiiable and versatile and resulted in successful testing described here and in {Brut man

116




4

SRR

96]. Testing also showed that it is a fairly simple matter to accurately implement the RBM
strategic level in C++ using objects to represent the nodes of the DFA. Specifically, UVW
tests showed that C++ missions produced by the mission planning expert system were
indistinguishable in behavior from equivale -t Prolog missions created by the same system.

In general, manually coded missions have been found to be error prone. Even
missions produced manually using templates or by manually modifying working code are
still subject to typographical errors, errors of syntax, and logical errors in individual phases
or sequences of phases, any of which result in invalid or incorrect missions. Moreover the
increased magnitude of the Prolog code as mission complexity increases makes manual
programming of complex missions infeasible. The slower growth of C++ program size
alleviates this problem only slightly. This result aniounts to no more than a confirmation
of previous results that were a primary motivator of this research work.

Missions produced using manually edited mission-specification language files and
the automatic code-generation programs offer a substantial improvement over manual
editing but are still prone to errors. This is because the mission planning expert system
checks missions for validity prior to generating the intermediate mission-specification file.
Mission specification files are not checked for errors by the automatic code generation
programs. Therefore, logical errors that are otherwise caught by the mission planning
expert system can be inserted by the human editor and processed by the automatic code
generation program without complaint, resulting in incorrect and unpredictable mission
code. Additionally, because the mission-specification language is significantly more
abstract than programming languages, it is somewhat terse and cryptic. Manually edited
mission-specification language files are therefore prone to typographical errors and
misordered data as well as logical crrors,

Missions produced using the entire mission planning system are easier to create

than those coded manually or using mission-specification files. They have also proved
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more reliable. The “Florida mission” [Marco 96b], a complex mine search and
classification mission consisting of rcughly 25 phases, was produced using the mission
planning expert system in approximately ten minutes. A manually coded version of this

mission was originally generated and debugged over a period of approximately two weeks.

C. REAL WORLD RESULTS

1. Sonar Tracking Behaviors

The primary goal of in-water testing to date has been the verification of execution-
level sonar tracking and vehicle-control “~zhaviors. Testing was conducted in the Center
for AUV Research test tank. Sonar tracking behaviors were first tested with the sonar at a
fixed position. Both the target-tracking and edge-tracking modes were successfully used
to track a 0.5 meter diameter cylinder. In this series of tests, the cylinder was placed in
various locations relative to the stationary sonar. The target search, target-tracking and
edge-tracking modes were then used to locate and track the target for approximately 60
seconds. Figures 46 and 47 show plots of bearing versus time and range versus time for a
test during which target-tracking mode was used to track the cylinder located on a bearing
of approximately 70 degrees at a range of approximately 13 feet relative to the sonar. As
can be seen in Figure 46, the scnar scanned to the right uniii reacking the target. At this
point it scanned back and forth across the target (a sector width of approximately ten
degrees). Figure 47 shows the range differential as the sonar scanned across and off the
target during its sweeps. In this plot, zero ranges actually indicate that no sonar return was

received.
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Figures 48 and 49 show test results from static sonav tracking of the edge of the

cylinder located at a range of approximately nine feet bearing approximately 337 degrees
relative to the sonar. Figure 48 shows the sonar sweeping to the left until locating the
target. At this point, it begins sweeping back and forth across the cylinder’s right edge. The
sweep width during tracking is approximnately eight degrees. As target size decreases or
range increases, the sweep width for edge tracking will be very close to the sweep width
for full target tracking. Figure 49 shows the range vs time plot. Again, zero ranges indicate
no sonar return was received. In this tests, the sonar located the target and successfully
tracked the edge for a period of 60 seconds. In this series of static sonar tests, both tracking
modes proved reliable so long as sufficient separation between the intended target and the
test tank wall existed to ensure adequate range differential between the target and the

background.
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Figure 48: Stationary Sonar Target Bdge Track Bearing vs. Time.
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Because of the sometimes unreliable nature of sonar data it was occasionally
possible to losc a target that was being tracked. Figures 50 and 51 show a portion of a test
where a pair of spurious ranges caused the sonar to lose the edge of the recovery tube after
it had becn tracking for over 90 seconds. Figure 50 shows that between 96 und 97 seconds
into the test, two sonar ranges at approximately nine feet were obtained. The previous on-
larget return was at a range of approximately six feet, so the nine foot ranges were assumed
to be part of the target. The subsequent ranges were accurate and represented the test tank
wall at approximately 12 feet, but since the previous on-target range was nine feet, the 12
foot range was also assumed Lo be part of the target. Figure 51 shows the sonar bearing as
it continues to sweep to the left across the wall which it believes to be part of the target. At
present, the only solution to this problem is to avoid situations where a spurious return will
cause loss of track. This means that targei. must be at least ten feet from background

objects (or the range differential for target discrimination must be red.ced from five feet).
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2. Station-Keeping Resuits

The next series of in-water tests were intended to verify execution-level station-
keeping behaviors. Tests were first conducted using full target tracking and edge tracking
to maintain a series of stations relative to the 0.5 meter diameter cylinder. As UVW results
had indicated, both scnar control modes can be used to navigate to and maintain stations to
within six inches. As expected, the higher target update rates of the edge-tracking sonar
niode allowed more responsive control than the fuil target-tracking sonar mode and
resulted in achievement of commanded stations in less than half the time. Figures 52
through 54 show the results of a test requiring Phoenix to proceed through a series of three
stations relative to the cylinder using a full target sonar scan. In addition, the vehicle
maintained the final station for a period of 30 seconds. Vehicle heading pointed directly at

the target for the first two stations and north for the final station.
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Figure 52: Commanded and Actual Range to a Cylinder with Target Tracking
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As can be seen in the previous figures, commanded stations were achieved and
maintained. However time between target updates was normally five to ten seconds and
occasionally as long as 20 seconds. This slow update rate resulted in a slow convergence
with cornmanded range, bearing and heading and an occasional tendency to overshoot.
While part of this is likely due to improperly tuned control con-.ants, the fact that station
keeping using the edge-scanning sonar mode converges upon the commanded station much
more quickly indicates that the slow target update rate significantly reduces the vehicle’s
ability to accurately control relative to the target.

Figures 55, 56 and 57 show the results of using edge racking as the basis for station
keeping. Stations were the same as those used during testing of the full target scan based
station-keeping behavior. Again, the vehicle achieves all three stations and maintains the
third for 30 scconds. The roughness of the range versus time and beating versus time plots
indicates that further wuning of control constants is required. The increased update rate of
edge tracking when compared to target tracking cnables Phoenix to achieve each station in

approximately half the time and significantly improves the accuracy of vehicle control.
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Figure 57: Commanded and Actual Heading while usiug Edge Tracking.

The final scries of in-water tests were intended to test the vehicle’s ability to
mancuver around the recovery tube in order to position for final recovery. Becausce of the
uneven shape of the recovery tube, this was a much more difficult task than mancuvering
about the cylinder. This test required Phoenix to travel through a serics of four stations
nsing the edge tracking sonar mode and maintain the final station for a period of 60
sceonds. Heading was divected at the corner of the tube being tracked for the first two
stations, and was aligned with the recovery tube {or the final two stations. The AUV
starting position was approximately 11 fect from the front left corner of the recovery tube.
The final station placed the nose of the vehicle just inside the recovery tube. T'rom this
position, recovery is possible using the final recovery control mode described in

Chapter I'V. Figures 58, 59 aud 60 show the results of one of these tests,
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The ability of Phoeniv to maintain station on ditferent types of objects using the
same sonar tracking and control modes is clearly demonstrated by these results. This
capability has the potential to prove valuable not only during recovery operations, but

during execution of various other types of missions as well,

3. Strategic Level and Mission Planning Expert System Results

While the primary purposc of in-water testing in support of this rescarch was to
verify execution-level behaviors upon which further testing would depend, au effort was
also made to test inprovenients to the strategic level software and missions generated with
the mission planning expert system. In-water testing of Prolog missions generated with the
mission-planning expeit sysiem were conducted in the NPS sub-Olymipic swimming pool
in March 1996. Muny oi the results of these tests can be found in [Leonhardt 96]. Missions

consisted primarily of search missions and missions that transited through various
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locations. Figure 61 shows a geographic plot of a search mission similar to the one depicted
graphically in Figure [ 1. This mission was generated with the phase-by-phase mission
specification facility. Tise mission includes two waypoints, a hoverpoint, a scnar search,
and a GPS fix followed by a waypoiut and a hoverpoint enroute to the recovery position.
Similar missions were generated for in-water tests using the means-ends analysis
porton of the system and also by manually editing mission specification language files.

Results obtained during in-water testing were similar to results obtained in the UVW,
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Figure 61: In-Water Results of an Automatically Generated Mission.

D. SUMMARY

Tests of features implemented during the conduct of this research were conducted
in two distinct but complementary environments: the UVW and the real world. UVW tests
were concucted to test features at all three layers of Phoenix’ RBM implementation. These

lests using methods described in the previous chapters resulted in successtul recovery in
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the tube in all but a few specific instances. The only failures occurred when Phoenix was
initially positioned directly in froni of or behind the recovery tube and was unable to
acquire and track a tube edge because of the narrow sonar cross section.

In addition UVW tests were conducted to test modifications to the strategic level
software and the mission planning expert system. These tests were highly successful and
show that an expert system for AUV raission planning/gencration is an extremely useful
tool that greatly reduces mission generation time while improving mission reliability.

In water tests were conducted to verify tow level sonar and vehicle control
behaviors. These tests indicate that the sonar control modes described in Chapter IV are
capable of reliably locating and tracking targets in the AUV environment. Also, target data
obtained during sonar tracking can be used as the basis for mancuvering relative to objects
being tracked. Maneuvering based on target edge tracking proved to be more responsive,
but both souar tracking modes were successtully used for station-keeping operations.
station keeping was demonstrated relative to a 0.5 meter cylinder and also a recovery tube.
Station keeping relative to the recovery tube using target edge-tracking proved precise
enough to position Phoenix’ nose in a position from which final recovery as described in
Chapter IV was possible.

Finally, missions were generated using the mission planning expert system and
successfully executed in the real world. Successful in-water tests of expert system
generated missions verify the utility of the system.

In the following chapter, the conclusions of this research are discussed.

Additionally, possible areas of future work are outlined. The conduct of this rescarch has

also to broader research goals of the Center for AUV Rescarch and other organizations.
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VII1. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

Previcus chapters of this thesis document the implementation and testing of
features intended to support AUV recovery in a small tube. The purpose of this chapter is
to draw conclusions based on the results of this research and to propose possible areas for
future work. The following section discusses conclusions., The section concerning
recommendations for future work is divided into twelve subsections. Each subsection
discusses an area for possible future work that was directly or indirectly relevant to the

conduct and results of this research.

B. RESEARCH CONCLUSIONS

The most obvious conclusion of this research is that sonar target tracking can be
used as the basis for precision autonomous underwater maneuvering. UVW and in-water
testing indicate that the precision of this maneuvering is sufficient for usc throughout a
recovery evolution. Further, UVW testing indicates that path planning and command
generation can be implemented at higher levels of the RBM to use lower-level sonar-based
maneuvering to plan and control recovery in a small tube.

A more general conclusion concerning the station-keeping behaviors is the
applicability of sonar-based maneuvering to broader mission areas. The ability to take
station relative to arbiirary objects will enable an AUV to become an active participant in
the environment rather than merely an observer. This ability has potential applications in
many types of missions that require interaction with objects in the environment.
Underwater filming, sampling, repair and construction are just a few examples of potential

AUV tasks that will require this capability.
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The most significant conclusion concerning the mission planning expert system is
that the use of a planning system such as this can greatly reduce mission generation effort
and improve reliability. Additionally, artificial intelligence planning technigues can be
used to create error-free missions that are guaranteed to accomplish the mission’s high-
level goals (assuming the goals are in fact possible and no catastrophic vehicle failures
occur). Itis this research aspect that may prove most beneficial to the field of AUV
research in general, Only through the successful implernentation of easy-to-use mission
planning tools will AUVs evolvz beyond their current role of academic and industrial
research projects.

Another interesting conclusion thatresulted indirectly from this research is that it is
possible to satisfactorily control a real-time system using an unmodified Unix operating
system. In Phoenix RBM implementation, hard-real-time (synchronous) tasks are executed
on the GESPAC computer under the OS-9 real-time operating systcm, while soft-real-time
(asynchronous) tasks ate executed on a separate onboard computer running under the Sun
Unix operating system. Hard-real-time tasks consist primarily of physical control of
vehicle hardware. Soft-real-time tasks on the other hand, consist of high-level and
medium-level mission control, planning, object classification and navigation. Most of

what might be considered “intelligent” behaviors fall into the category of these soft-real-
time tasks. By dividing tasks into hard and soft real time categories in this manner, Phoenix
control software is implemented primarily on a system that many might consider unsuitable
for control of a real-timne system. The only drawback of this system is that it requires two
separate onboard computers connected via LAN and relies on BSD socket communication.

Perhaps the broadest and most significant conclusion of this research results from
the successful use of the UVW for the implementation of vehicle software. The robustness
of the UVW allowed for deterministic testing of vehicle software in a benign environment.

Features were implemented and comprehensively tested one at a time over a period of



approximately one year prior to in-water verification. By exhaustively testing software

features in the UVW prior to attempting in-water tests, it was possible to conduct the bulk
of in-water testing documented in this thesis over a two-week period. The UVW is a
virtually unlimited resource, whereas power supply, hardware limitations, and logistics
requirements limit the availability of the physical vehicle for in-water testing significantly.
The in-water results of this research area depended heavily upon virtual world testing and
would have not have been possible were it not for the UVW,

While the preceding conclusions are significant, they amount to little more than a
first step towards recovery of AUVS using docking stations and submarines. A great deal
of work remains. The research detailed in this thesis is prelimmnary i nature and is
intended to begin dealing with issues involved with self recovery of an AUV in a confined

space. The following section of this thesis details some of the work that remains.

C. RECOMMENDATIONS

1. Geneial Tactical Level Tests and Enhancements

The most obvious area for future work is the verification of tactical level features
through in-water testing. While the in-water tests described in Chapter V11 verify the
reliability and correctness of the low-level sonar and vehicle -control behaviors, these tests
did not verify their use by the tactical level for successful recovery control. Along the same
lines, the development of tactics that use these low-level behaviors to accomplish more
general goals remains a topic for future work. In particular, these behaviors might be used

to implement many of the advanced capabilities outlined in {Brutzman 96].

2. Sonar Tracking Behavior s
The next area of future work involves improvement of the sonar tracking behaviors.

As depicted in Figures 50 and 51, under some circumstances it is possibie for the sonar to
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lose contact with the target being tracked. Even under ideal circumstances (error-free sonar
data and a clutter free environment), it is possible for AUV motion to causc the sonar to
lose track of the intended target.

Improvements in this area fall into two categories: improvements intended to
prevent the sonar from losing contact with its intended target and improvements intended
to enable to sonar to regain the target in the event of loss (which also involves recognition
of target loss). If a full target scan is used, features can be extracted «s the sonar sweeps
across the target as documented in [Marco 96a]. This work might be augmenied by the
implementation of a simple learning algorithm to “memorize” target features on the first
sweep to allow tracking of arbitrary cbjects without maintaining a target feature database.
Successtul implementation of this tvpe of system will also need to deal with issues such as
asymmetric objects which have different features when viewed from different angles.
Successtul implementation of this type of system to support the fasier edge tracking sonar
mode mightinvolve periodic sweeps across the entire target 10 ensure that the proper target
was being tracked (by recognizing and verifying the features recorded in the previous full
target sweep).

The computational and storajie requirements of this type of system will doubtless
necessitate its implementation at the tactical rather than the execution level. Since learning
and object classification are involved, placement at the tactical level is a good match with
ideal RBM tasking. Tactical-level implementation will atlow implementation with
minimal changes to the current execution level sonar modes. The addition of commands
to the execution level command language to enable switching from edge tracking to target

tracking for one swecep is probably the only change that is required at the execution level.
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3. Sonar Ciassification

A third area for future work exists in improving Phoenix’ sonar classification
capabilities. While a signiticant amount of research effort has already been directed at this
topic, current Phoenix sonar classification capabilities were not specifically intended to
support recovery operations. Sonar classification research to date has been directed at the
general case of translating sonar data into line segments and polygons representing generic
objects [Brutzman 92, Campbell 96] and the specific case of classifying mine-like objects
[Campbell 96, Marco 96a]. Complete implementation of recovery capabilities must
inciude sonar classification of the intended recovery device. The most straightforward
implementation of this capability is probably best performed by augmenting currently

existing sonar classification algorithms.

4. AUV Tracking and Control

While the PD control laws discussed in this thesis are fairly effective, the
cxperimental results of the previous chapter clearly show that they are far from ideal. In
practice, sliding mode control laws such as those derived in [Marco 96a] have proven more
accurate and responsive (albeit more computationally expensive) than PD control laws.
Because of the current Phoenix execution level implementation demands and a weak 60830
CPU, the incorporation of sliding mode conwol laws (for station keeping and other control
modes) may be possible only after optimization of the execution level as described later in
this section. A more thorough discussion of various control modes and their suitability for
AUV control during recovery can be found in {Chaputs 96].

In the interim an effort to tune PD control constants is necessary. The present
Phoenix ecxcention level uses PD control laws for all closed loop control modes (hover
control, waypaint conirol, ete.) and will require tuning of constant terms of these control

laws as well. UVW tests documented in the previous chapter demonstrate that PID control
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laws can be used to obtain smooth motion along a planned path. Tuning of constants based
on accurate Phoenix hydrodynamics to duplicate UVW results during in-water testing is
therefore possible. Ideally, this work will proceed in parallel with UVW validation
discussed later in this section, since accurate UVW hydrodynamics will enable tuning of
control constants without requiring in-water tests.

Similarly, an effort to ensure standardization of control law nomenclature among
the various Phoenix control modes is needed. This will facilitate the modification and
tuning of existing control laws and the implemeniation of new control laws as well.

Finally, improvement of the mathematical model used for dead reckoning between
sonar target updates is required. Errors introduced because of an inaccurate mathematical
model lead to improper control response that can be counterintuitive to diagnose. This
phenomenon was encountered on numerous occasions during the conduct of this research.
The six DOF model of the UVW world demonstrates that accurate mathematical modeling
of AUV hydrodynamics is possible and can run in real time. Improvement of the
mathematical model represented by Equations 30, 31 and 32 will improve mauny aspects of
the sysiem that depend on accurate vehicle response in addition to those documented in this
thesis. Hover behavior, navigation and sonas classification are three examples. Ideally, the
need for a dead reckoning mathematical model can be eliminated entirely by the

incorporation of an IMU as described later.

5. Ocean Current and a Moving Submarine

Because of the preliminary nature of this research, no real-world experimentation
vas conducted into the effects of current dwing reccovery, UVW iesiing in the presence of
a uniformly constant ocean current pointing in an arbitrary direction demonstrated that
these control algorithms are robust, but before this research can be applied in an

uncontrolled environment such as the open ocean, it will be necessary to rescarch the
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As previously mentioned, the mathemaiical model currently in use contains
inherent errors. Even a far more robust imathematical rnodel is unlikely to account for
external disturbances such as wave motion or uneven current effects, Navigational errors
introduced by the mathematical model have a significant negative impact on all vehicle
functions that rely on accurate navigational data. Among these are hover control, waypoint
control, path planning, obstacle avoidance and object classification.

Research is currently ongoing into incorporating an IMU into Phoenix [Bachman
96, McGhee 95]. The successful implementation of accurate real-time navigation using an

IMU is critical to many Center for AUV Research goals.

3. Strategic Level £nhancement

A possibility for future work ie RBM strategic level includes porting to other
languages such as Ada95 (including the development of phase templates and automatic
code generation programs) [Holden 95]. Additionally, work to be conducted at all three
levels of the KBM will involve the expansion of the strategic level’s primitive goal set and
execution level command language [Brutzman 96]. Present primitive goals primarily
support scarch missions. Future improvements might support run-time communication
between Phoenix and 1ts support platform, dynamic missions that can be modified as
divected by the support platform, and moie versatile interaction with located underwater
objects (e.g., mine neutralization).

It may also be possible in the near future to implement a more dynamic strategic
level that is capable of constructing portions of the DIFA at run time. This might prove to
be a very useful feature. particulurly given the unpredictable nature of the marine
environment. The previously rddressed shortcomings of the means-ends analysis
algorithm (particularly those concerning non-optimal solutions) may prechide its use in this

manner, However, another planning algorithm such as search reduction through least
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commitment, dependency-directed search, or meta-level planning [Tate 90a] may prove
more applicable in this area. Planning systems such as Tweak [Chapman 90], MOLGEN
[Stefik 90}, NONLIN [Tate 90b], DEVISER [Vere 90], and FORBIN |Dean Y0 for
example, address both the efficiency and the temporal aspects of their solutions. Other
issues to be dealt with before this type of sclf-modifying system is possible include

nissions of nondeterministic length and goal prioritization.

9. The Mission Planning Expert System

Possible future work might also be directed at improvements to the mission
planning expert system. Obviously, as the functionality of Phoenix evolves, the mission
planning expert system will need 1o evolve to take advantage of new vekicle capabilitics,
Additionally, work is ongoing to simplify the phase-by-phase mission: specification portion
of the system and to improve the automatic mission-genceration portion of the system.
tdeally, the means-ends analysis algorithim will evolve to allow automatic generation of
missions that take full advantage of the DFA structure of the strategic level. If ihe
automatic mission planning is enhanced substantally, it may be possible to completely
climinate the phasc-by-phase specification portion ol the system without sacrificing
tlexibility. Other planniag sysiems including those mentioned as possible run-time mission
planners, may prove uscetul in this arca as well. Modifications that may be applicable o the
short term include modifying the phasc-by-phase specitication facility to incorporate error
correction rather than simple error detection.

One potential mission planner implementation might involve a combination of
means-ends analysis with another search technique. For instance by asuigning costs to the
application of cach operator, it is possible to determine the total cost of a solution, I a
hybrid means ends/scarch algorithm is applicd iu pacallel to find operation scouences

satisfying cach iop level poal, the costs of each partial solution can be compued. By
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choosing the lowest cost option and reapplying the algorithm to the remaining goals
(starting from the end state after application of the low-cost partial solution), a sequence of
operations can be generated to accomplish all of the goals. This strategy amounts to a
combination of means-ends analysis with best-first scarch [Winston 92]. Other search
strategies may be aseful in this sort of implementation as well.

Finally, the current version of the mission planning expert system is dependent
upon the availability of Quintus Prolog and Prowindows. Possible future work to permnit
cross-platform independence includes porting the expert system to an HIMLU interface that
can be run across a computer network. Such a system would probably involve a server-
bused script that executes queries ag -nst the rule base. Since such a system can be run
trom any plattorni using any web browser, such an approach provides complete platform

and window system independence.

10. Operating System Issues

One of the conclusions drawn carlier in this chapter is that it is possible to control
a real-time system using a standard Unix operating system. This does not hawever mean
that it is necessarily desirable. The requirement of two computers and the reliance upon
network communications may justify the transition to a single computer running a real-fime
operating system such as VxWorks [Wind River Systemis 95]. Ou the other hand, since the
exeeution fevel is not multi- threaded, it may be possible to control even the hacd-rest-time
tisks by using a dedicated processor running o standard operating system such as Unix
This implementation still requires at least two onboard computers. As both of these
alternatives are worth looking into, a comparative study may lead to interesting and
insightiul conclusions that will be relevant to o number of arcas in adation to AUV

research.
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Another operating system issue involves the concurrent process implementation of
the tactical and strategic levels. The Unix version under which the current system runs
does not support shared memory between separate processes even when they are forked by
a common process [Stevens Y2]. This shortcoming necessitates the use of Unix pipes for
interprocess communication. Newer versions of the Unix operating system now support
shared memory [McKusick 96]. It may be worthwhile to rewrite the communications
portions of the tactical level to use shared memory for some communications, This might
improve the efficiency of the tactical level and may prove more readable as well. While it
1s probably imipractical to replace all interprocess communication with shared memory,
maintaining a single copy of the vehicle state vector as opposed to one copy for cach
tactical level module might prove very bencficial. A simular upgrade of the strategic and
tactical levels that addresses the same issues might be their implemientation in an inherently

multi-threaded computer language such as Ada9s [Holden 95].

11, Code Optimization

Numerous features have been added to o1l three layers Phoeaiv RBM
imiplementation during the conduct of this and other research. While these new features are
quite tobust, fittle effort has been expended to ensure efficiency of the overadl systenm. As
a result, the execution level in particular is only capable of maintaining a synchronous
speed of just over five Hertz | Burns 96, While this speed appears adequate, it leaves litte
room for future enhancements. The two possible solutions are the methodical optimization
of source progriams or an upgrade of execution level compoter hardware (which likely will
require a software rewrite anyway),

While the tactical level does not currently sutfer from inefticiency to as great a

degree as the exeention fevel, optimization is still possible. At the strategic level, however,

readability is considered more important than etficiency. This coupled with the relatively
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small size of strategic level programs makes optimization of this software layer

unnecessary.

12. Underwatc Virtuai World Improvement

A final area for possible future work is improvement of the UVW. As discussed in:
the previous section, the UVW proved to be an invaiuable tool during the conduct of this
research. Validation of the UVW by using real-world data to tune hydrodynanuc model
coefficients will make it even more valuable, Tuning of conirol constants based on an
invalid vehicle response model inevitably leads to contro! problems that are extremely
difficult to diagnose due to the large number of coefficient and variable terms in most
control faws. Problems of this sort encountered during this research included both
overdamped and underdamped control law coefficients. Complete validation and
veritication of all vehicle hydrodynamic response pararacters is essemial to the accurate
modeling required for development ot reliable control response. This is casily the most
important area of rescarch concerning the UVW since improving the accuracy of vehicle
response in the UVW will have a dramatic effect on the reliability of developed softwaie.

Another possible area of work concerning the UVW is the translation of the viewer
from ('++ and Open Inventor to Java [Gosling 96] and the Virtual Reality Modeling
Language version 2.0 (VRML) [VRML Repository 96]. Translation of network code to
Java and graphics code to VRML will allow use of the UVW on any platform using a
VRMI.-compatible web browser. it will also facilitare the sharing of world models by

allowing objects to be imported into the UVW from anywhere on the faternet.

D. SUMMARY
This chapter discusses conclusions drawn based on this rescarch and possible arcas
for future work. The first major co-clusions of this work are that it is possible to use onar

information as the basis for precision mancuvering of an AUV and that higher level
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behaviors can usc this capability to control recovery operations. Aduitionally, precision
maneuvering based on sonar data can be nnplemented in a general enough way to facilitate
its use during various portions of a mission. 1t was further concluded that a mission
planning expert system 1s an invaluable tool for the rapid developnient of complex missions
that are free from errors and accomplish the mission’s goals. Possibly the most imp-rtant
conclusion drawn trom this research is the valuc of the UVW for rapid development and
testing of vehicle software

During the conduct of this rescarch, numerous areas for potential future work were
encountered. First is the development and in -water veritication of tactical level behaviors
that rely ou the sonar and vehicle control behaviors described in this thesis. Other
possibilities directly related to furthering this research area are the enhancement oi the
sonar tracking behaviors, sonar classification direcied at identitication of the recovery
device, improvements to the current PD control laws and dead-reckoning mathematical
model, and dealing with ocean current, moving targets and unexpected obstacles during
recovery operations. Concerning the strutegic level and the mission planning expert
system, possible future work includes implementation of a more dynamic strategic fevel
capable of limit«d ran-time planning, improvement ot the automatic mission generation
and phase-by-phase mission specification facilities, and porting ol the expert system to a
platform-independent server based architecture accessible from the internet. Fonally, more
peneral arcas of possible future work inclade a comparison of real-time and standard
operating systems for AUV ~ontrol, optimization of the execution and tactical level
programs, validating the UVW based on real world data, and ultimately conversion of the

UVW viewer ta Java and VRMI,
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APPENDIX A. OBTAINING ONLINE RESOURCES

One of the Naval Postgraduate School’s primary missions 1s to conduct rescarch of
value to the nilitary and public. The Center for Autonomous AUV Research makes all of
1ts significant work avuilable online. Via the lnternet, copies of all current software which
15 used to run Phoenix or the underwater virtual world are available for downloading. Other
items available include graphics images, photographs, master’s theses, Ph.D. dissertations,
briefings, personnel listings, and other information relating to AUV research at NPS.

{1 .conhardt Y6]

An ¢lectronic matl (e-mail) group (quvrg@cs.aps.navy.mil) is used to distribute
massage traffic to all members involved in the research group. Interested individuals group
can subscribe to the e-mail group by filling out a reques: form which 1s available on the
Center for AUV Research World Wide Web site (uip /iwww.os.nps.navy.milirescarchl
auv). |Leonhardt 96

Files for the software can be downloaded individually or as a complcte compressed
archive package. In addition, numerous sample missions written in Profog, C++. and the
excecution level scripting language are included. The complete download and installation
instructions are available at the Software Reference site
Chimpy Hiwwwe st nps navy mil/~brutzmanidissertation/sojtware  refercnce itml). The size

of the complcie uncompressed archive is approximately 15 MB,
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APPENDIX B. EXECUTION LEVEL COMMAND LANGUAGE

This appendix contains the mission.script. HELP file. This file describes the syntax
of the execution level languave. This language is used 10 construct mission script files that
can be read by the execution level or tactical ievel process to execute » scripted mission.
Additionally, this language is used by the tactical level to direct the execution level in order
to accomplish strategic-level goals. Finally, this language can be used inieractively and
entered from a command iine to control the AUV using one command at a time. The
missionscript HELP file also contains instructions on how to construct and use mission
sctipt files. This file is available online at
htipiwwwe stlnps navy mill~brutzmanidissertation/saoftware _reference himl
Thus file 15 available individually or as part of the .tar package comaining all Phoenix and

UVW software.
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2 U 7/
mission.script .HELP 12 August 96
Mission script syntax for NPS AUV zxecution level and tactical
control, in water aud in the NP5 AUV Underwater Virtual World.
http://www.stl.ups.navy.mil/~auv/execution/mission. script . HELY
Don Brutzman brutzmanénps.navy .mil

2 2 Ul v I

This tile describes how to chanye and =reatre NPS AUV mission script files.
Example mission.script files and the ‘'execution’ program are in the

~/execution subdirectory.

Script commands are received by the AUV execucicr level (@xecution.c) from
the tactical level during o miseion, the operator at che keyboard, or
read from the “mission.script* file. Both tactical and execution can
carry out mission scripts.

To run a new mission, copy a different existing misgsicn file over file
‘mission.script’ or edit the mission.script f£ile for a new mission.

Example:

unix- «d execution
unix> cp mission.script.siggraph mission.script
unix> execution virtual fletch.cs.nps.navy.mil

or
ulil¥X> execution virtual fletch mission mission. :cript.siggraph

Many of the following conmands will also work when invoked from the command
line upon execution. Detailed commend line guidance is also available
interactively using the ounline NPS AUV process launchor form at
hetp. //blackand.stl .nps.navy.mil/~auv/launcher/launcher.cgi

Numercus scrint keywords (and synonyms) are currently recognized. We have been
generous in the use of synonyms in order to reduce the possibility of
catastrephic gpelling errors. This approach might be further extended
to include synonyms in other languages (French, Portiguese etc.)

Hint h.nc!

Sections in this syntax help file:

Helm commands: open-lovsp and clased-loop control
~ Naviga.lon commands
- Missioln timing commands

Mission setup and confiyuration commands

Sonar commands

Miscellanecus commands

| | .
e e e e e e e e e e - -
“oywnrds | Paramerevs |Devaription
synonyms 1 (optional] 1(all units are feet, degrees ov seconds as appropriace;
e e e il e e L
i |
| |
/7 Helm commands:  open-loop and closed-loop control --- R A4
RPM # [#4]1 S2t ordered rpm values to # for both propellers
S PEEU § [##] [ or independently set Jeft & right rpm valueg
PROPS Bo(#%] Lc # and ##% respectively]

*

PROPELLORSG [##) maximum propel lor speed is - 700 rpm => 2 it /sec
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THRUSTERS-ON Fnab!e vertical and lateral thruster control
THRUSTERS

THRUSTERON

THRUSTERSON

NOTHRUSTER Disable vertical and lateral thruster control
NOTHRUSTERS

THRUSTERS-OFF

THRUSTERSOI'F

RUDDER # Force rudder to remain at # degrees, thrustecs-~off.
Value is for after rudder, negative command turns left.

DEADSTICKRUDDER [ #}] Force rudder to remain at 0 [or #) degrees,
thrusters-off.

COURSE # Set new ordered course (commanded yaw angle)
HEADTNG #

YAW #

TURN § Change ordered course by # degrees

CHANGE  COURSE  # (positive # to starboard, negative # Lo port)
PLANES # Force planes to remain at # degrees, thrustevs-off.

Value is for after planes, negative command points down.

DEADSTICKFLANES (#] Force planes te remain at O {or #] degreec,
thrusters-off.

DEPTH 4 Set new ordered depth (commanded z)

pPITCH # Set new ordered pitch (commanded theta auyle) .
THETA # imly effective during HOVERCONTROL.

ROTATE # open loop lateral thruster rotation control

at # degrees/sec

NCROTATE disable open loop lateral thruster rotation control
ROTATEORF
ROTATE OFF

LATERAL 13 open loop lateral thruster translation contivol
at # ft/sec
{(positive is o starbocard, maxXimum is 0.5 ft/sec)

NOLATERAL dizable open loop lateral thiustel translalion control
LATERALOFF
LATERAL-OFF

7/ Navigation commands —--- -« = v wl sl o e oL L
DIVETRAUKER] # ## ###Position ot Divelracker transducer 1

DIVETRACKER2 # #% ###Pocition ot DiveTracker tiransducer 2
S5cill need to incorporate bearing to DiveTracvkers.

GPSs Proceed to shallow depth, take Global Pagitioning
GPARFIX Systen (GPS) Tix, rtestore ordered depih when done.
GPS-FIX Contrcl (Lhrusters, propellers/planes, combined)

is not modified. Maximum fix Uime o 30 secondo,
At which time exevrran vetu-ny to previousiy
ordered depth.

6PS -COMPLETE GPS fax complete, resume previously ardered dept .
GRS CFIX COMPLETE

GYRO ERROR # Degre 0ot error measared for gyrocompaa:e.
GYROERROR " [GYRD + KERROR . TRUE)
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DEPTH-CELL-BIAS # Feet of bias «rror measured for denth cell.
DEPTHCELLBIAS # [DEPTH CELL Z + BIAS = TRUE 2]

DEPTH -CELL -ERROR #

DEPTHCELLERROR #

POSITION # 44 (###)reset vehicle dead reckon position to (X, y) or
LOCATION # 4 [H#B¥) (X, Vv, z2) = (¥, #%, ###) at current clock time
FIX # % (###]This Is a navigational position fix. Receipt of a

FOSITION/LOCATION/FIX command resets the executicn
level dead-reckon pogition. Note that depth value ¢
will likely be reset by depth cell if operational.

ORIENTATION # ##% ##%reset vehicle orientation to
ROTATION B o#4 #4# (phi, theta, pel) = (#, ##, #44#)

POSTURE #a #b #c #d #e #f
reset vehicle dead reckon posture to
(x, Y. 2, phi, theta, psi) - (#a, #b, #c. #d, #c, #t

OCEANCURRENT #x #y [#2] Ocean current rate along North-axis, East-axis and
CCEAN-CURRENT #x #y (#2] ({optional) Depth-axis (feet/secn)
(this is cartesian version of set and drift)

WAYPOINT #X #Y [#7] [#rpm]

WAYPOINT-ON #X #Y [#Z] [#rpm)
Point towards waypoint with coordinates (#X, #Y)
(depth #2 optional) (speed #rpm optional). You can
leave waypoint control by ordering course, rudder,
sliding--mode, rotate or lateral thruster control.

If in TACTICAL mode, exccution reports STABLE when
waypoint is achieved.

STANDOFV # Chang= ¢tandotf distance for WAYPOINT-FOLLOW and HOVER
STAND-OFF # controil

STANDOFFD 1S TANCE 4

STANDOFF-DISTANCE #

STAND-OQOFF -DISTANCE #

HOVER [#X #Y) [#7] Hover using thrusters and propeilers for longitudinal
and lateral positioning at zpecified or previous
wayponint

HOVER [#X #Y] (#7](®*orientation} [#standoff-distance]
Uses WAYPOINT control until within #standotff-distance
of HOVER point (#X, #Y, #2), then swiiches to
HOVER control with [oprronal] riral #orientation

Full cpeed (700 RPM) port & starboa,.t iz meed 1 f

AUV distance to WAYPQINT ius » #atandoff-distance + 107,
then siows to 200 RPM until within #standoff-distance,
then HOVER control.

HOVER withecut. parameters is the preferred method of
slowing since backing down wilh negative propellery wmay
result in large sternway and -overe depth excursions.

If in TACTICAL mode, execuiion runorts STABLE when dons.

HOVEROFF Turn off HOVER mode
HOVER OFF
HOVER_ OFF

TARGETSTATION #R #B [#Pgy])

TARGET STATION &R #R [#Pei]
Hover relative to a sonar target ar ranae - #R and
tavget bearing #R frow the AUV, commanded AUV
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heading is #Psi (default is point at rarget).
Stationkeeping will use full rarget rracking
aonar node

TARGETSTATION #R1 #Bl #R2 #B2 [#Psi)]

TARGET-STATIOMN #R1 #B1 #R2 #B2 [#Pgi]
Hover rvelative to sonar target. Target currently
at range = #R1, bearing #Bl from AUV. Commanded
range = #R2, cowranded bearing - #B2, commanded
heading - #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATICN #R 4B [#Psi]

EDGE-STATION 4R #B [#Psi)
Hover relative to a sonar target at range = #R and
target bearing #B from the AUV. Commanded AUV
heading is #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATION #R1 #B1 #R2 #B2 (#Pci}

EDGE -STATION #R1 #B° #R2 #B2 [#Psi)
Hover relative to sonar target. Target currently
at range = #R1, bearing #Bl from AUV. Commanded
range = #R2, commanded bearing =~ #B?, commanded
heading - #Pui (detault i= point at target:.
Stationkeeplng will uce targer edge tracking
sonar mede

TARGET OFF Turn off stationkeeping control mode

TARGETOTF

NO-TARGET

NOTARGET

TARGET~PCINT Commanded #Psi during stationkeeping will point
TARGETPCINT directly at target centev

NO - TARGET POINT Commanded #P:i Jduring stationkeeping can be
MOTARGETPOINT manually conirolled using HEADING commands

TARGET--POINT OFF
TARGETPOINTOFF

ENTERTUBE ¢ #4 Experimental control mode. This tells excecution level
ENTER-TUBE # #4 that nose has entered the tube, drive the rezt of the
way lu using dead reckon lor forwdard wotion and scnars
(pointing to opposite sides) to maintain tube gide wall
standof{f. Parameters:
# How far forward to travel to bte fully inside Luboe
¥4 Tube orientation in deosaes

S Mizgsiron timing command:s o - - - -eoo o oLl o
WATT # Wair (or run) for # seconds (letting the robot oxecutonr
AR # prior to reading from the script tile again

B oin 1 aCTICAL mode, execution lghores WUIT commands.

TIME # Walt (or runi until robol clock rime #
WATTUNTII. # (letting the robot oxecutc its current orders)
PAUSEUNTTL 4 prior to reading from the ccript file wiain

If 1 TACTICAL mode, execution ignorces TIME commands.

TIMESTEP # hange default execution level time atop interval
TIME -0 # trom default of 0.1 sec Lo # @
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STEP
SINGLE--STEP

loop for another timestep prior to readindg script again.
only useful in execution keyboard mode.

PAUSE temporarlly stop execution untll <enter> 1s pressed
REALTIME run execution level code in real-time

REAL-TIME (busy wait at the end of each timestep if time remains)
NOREALTIME run execution level code as quickly as possible
NO-REALTIME

NONREALTIME

NOWAIT

NO-WAIT

NOPAUSE

NO-PAUSE

// Mission setup and configuration commands ------—--=--- - mmm s —m oo oo /]
HELP Provide a list of available keywords

? (as specified in this HELP file).

/?

-2

i/ comments follow cn this line which are not executed

/* note comments will still be spoken if AUDIO-OM

# pound sign also indicates a comment if in first coiumn

// Three startup modes: [LOCATIONLAB] | TETHERED | UNTETHERLD

LOCATICONLAB
LOCATION -LAB

TETHER
TETHERED

UNTETHER
UNTETHERETD
NOTETHER
NO TETHZR

VIRTUAL hostname
VIRTUALHOS hosriiame

KEMOTE
REMUTEROST
DYNAMICS

TACTICAL

Vehicle is cperating in lab using virtual world.
This is default mode.

command line switch only, used for in-water runs
set DISPLAYSCREEN=TRUE and LOCACTIONLAB=FALSE

command line switch only, used for in-water runs
set DISPLAYSCREEN=FALSE and LOCACTIONLAB=FALSE

tells execution level to open sockel Lo virtual world
which is already running and waiting on ‘hostname’
VIRTUALHOST is a command line switch. oxample:

unix> execution virtualhost fletch.stl.nps.navy.mil

hostnama tells execution leval to open socket to tactical level

TACTICALHOST hostname which is already runninig and waiting on ‘hostname’

STRATEC I+

TACTICAL/STRATEGIC is o —ommand line swiltcn. Example:

STRATECTCHOST hostnameunix> execution tacticalhost tletch.stl.npe.navy.mil

MISOTON 1 lername
LGCRIPT O fauleliaie
FILE i ilenane

TELEMETRY (1lemnune

NODCR[PT

KECHOARD

KICROARD DN

VIEYROARD OFF
Mo KEYROARD

Replace ‘micgion.wzcript’ with ‘filename’ and start

the new misgion. Read tactical commands for execution
level trom filename.

Playback prerecorded telewetry data from {ilename.
Consider using with NOSCRIPT if no script fiie present.
dynamics st~rld bh> run with selection

E difad_rcechon Les. _wilb_execubion_level

[anove gcript command file. Selectively used
in corbinat ion with TELEMETRY data file playback.

read soript eetwmands from keyboard

toard sepipt command:: from miagion.seript file
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TRACE
TRACE-ON

TRACEOFF
T'RACE-QFF
NOTRACE
NO-TRACE

LOOPFOREVER
LOOP - FOREVER

LOGCPONC1-
LOJP-ONCE

LOOPFILEBACKUP
LOOP FILE-BACKUP

CNTERCONTROLCONSTANTS

enable verbose print statements in execution lowval

disable verbose print statements in execution level

repeat current mission when done.
each repetition is called a ‘replication.’

do not LOOPFOREVER, stop when end of script 1s reached

back up o~utput files duoring each loop replication

to permit inspectior. while new filec are written

the backup files are in execution directory:

output . telemetry . previous & output.l_seccad.previour

start a kevboard dialog teo enter

ENTER -CONTROL--CONSTANTS revised cont:ol algorithm coefilcients

CONTROLCONSTANTSINPUTIILE read revised control aloorithm coefficirents
CONTROL -CONSTANTS -~ INPUT-FILEfrom file "conticl.constants.inpuc”

BENCH-TEST
BENCHTEST
BENCH

NOTEXT
NO-TEXT

TEXT
TEXT-ON

QUIT

STOP

DONE

EXIT

REPEAT
RISSTARY
COMPLETE
<eot> marker

KILL
SHUTDOWN

7/ Sonar commancd:

SONARTZS  #b 1 #p:
STNAR 729 #b #r 4p
SONAR_Z 25 #b #r #p
STT2% #b 41 #p
SONAP 1O #h
SONAR - 1000 #b
SONAR_ 1000 #b

STede Eig

SUAN-WIDTH #
SOANWIDTH #

SONARTRAC

CONARTRACEORE

Simplified 1nitial command-line parameter to>r guick
switch setting during Russ’'s control and prop testing.

climinate text display in command window
(useful for verbose/long run= in virtual wonld)
Turn text display in command window back on

do nol. execute any more comuwands in Lhis script, butl
repeat. the mission again 1f LOOP-FOREVER ia set

same as QUIT but also shutg down socket Lo virvual world

‘dynamics’ process.

Set the Learinyg (#b), vange (#r), 2l power  (Ep) o of the
ST-725 @sonar. [u virmnael world, bearing i necesaary for
sonar nodeld . Tn watoer, this =tores data tn Lhe tate
vector for replay and examinaivioen.

Manually control the $THOOU sonar beaving to 8 degrec:s:
relative to Phoenix heading

Total degreez for default ST100U soner gcan, centered
about  pbow

Enable verbose print statements in execution sonar code

Diuable verbose print ctalements: in execunlion sonar code
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SONARINSTALLED
SONAR-INSTALLED

NOSONARINSTALLED
NO- SONAR- INSTALLED

Sonai interface installed. use them

Sonayr interf.ce not installed, don’'t use

/7 Miscellaneous commands ~ --- - mmmem s oo e o R I

AUDIBLE
AUDIO
AUDIO-ON
SOUND ON
SOUNDON
SOUND

SILENT
SILENCE
NOSOUND
SOUNDOFF
SOUND-OFF
AUDIQQFF
AUDIO-OFF
QUIET

SCUNDSERIAL
SOUND-SERIAL

SOUNDPARALLEL
SQUND - ARALLEL

EMAIL
EMALL-ON
E-MAIL
E-MAIL ON
EMATLON

EMALLOFF
EMAIL- OFF
E-MAILOFF
E-MAIL OFF
NO-E-MAIL
NO-EMAIL
NO E MAIL
NOEMAIL

SLIDINGMODECOURSE
SLIDING-MODE-CNOURSE

SLIDINGMODEOFF
SLTIDING-MODE-OFF

PARALLELPORTRACE
WAYPOINTFOLLOW
WAYPOINT-FOLLOW

WAY T INTEFOLLOWON
WAYPOINT rOLLOW--ON

WAYPOINTFOLLOWOFF
AAYPOINT FOLLOW-OFF

¥

enable text-te-speech audio output

disable text-to-speech audio output

tell virtual world to pause while playing back sound
(dafault)

tell virtual world to play sounds as darallel processes
{rhis may cquse garbles if speeches play simultaneously)

ask user for electronic mail address at mission start,
send user ar. electronic mail report at mission finish

disable electironic mail address guery teature

¢liding mode course coatrol algorvithim (not yet working)
Disable sliding mode courge control algoritthm ( * # * )

enable trace gtatements tol parallel port communications
Set mode to arrive at 2ach waypoint hefore reading the
next. mission soript comuand, .o, conlinne towards each
waypoint for however long it takes to reach the standoti
distance before pausing to read the next command.
Probably not needed anvmore.

Disables WAYPOINTFOLLOW made

/7
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APPENDIX C. MISSION GENERATION EXPERT SYSTEM USER
GUIDE

A. INTRODUCTION

This appendix consists of operating instructions tor the mission planning expert
system. Included sections include startup and initial operations, tactical level initialization
tile generation, the means-ends mission planning facility operation, phase-by-phase
mission specification facility operation, and finally, exccutable code generation,

compilation and execution.

B. STARTUP AND INITIAL OPERATIONS

The mission planning expert system requires Quintus Prolog version 3.2 and
Prowindows [Weilemaker 94]. At present, these are only installed on
aild.cs.onps.navy.mil focated in the artificial intelligence (Al lab, however the
expert system can still be run [rom anywhere on campus by starting a remote xterm, Log
onto any Unix workstation on campus, start X-Windows (1f necessary) and type the
following from any xterm shell:

xhost aid4.cs.nps.navy.mil

> telnet ajid.cs.nps.navy.mil

Log onto the auv account on aid . cu.nps.navy . mi L and change to the
steategiodirectory. 8 Prowindows by typing

aid- cd strateyic

aid> xterm ~display localmachine:0
For this commmand, localmaciiine is the machine upon which you are working, After
« xecuting this command, a new xtexrm will pop up. In this window type:

Al4> newprowin
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Once Prowindows has started, the expert system is loaded and started by typing (including
the period):

?- [mission expert].

This will cause the software to load and start autornatically. To later restart the expert
system from prowindows (if it has been exited using the quit button), simply type

7- go.

Once the windowed mission generation expert system has started, use the menu
button labeled Available Charts to choose the operating area for the nission you wish to
generate. Clicking the left mouse button over the menu will cause the available operating
arca information (and the area maps) to cycle one at a time. Depressing the right mouse
button ever the menu button will invoke a drop-down menu displaying all possible
operating arcas. Dragging the mouse to the desired operating arca and releasing the mouse
button will cause it to load. The currently displuyed map v+l always correspond to the
currently loaded operating arca. The operating arca can be changed at any time, however,
changing the current operating area while editing w mission will automatically clear all
current mission data.

[t is also a good idea at this point to enter the name of the desired output file on the
Qutput File Name item (although the file name can be entered or changed any time prior
to code generaticn). The file name must conform to standard tnix naming conventions. It
isbest toadd the .pl, .C, . cc, or . opp extension appropriate for the final output
language, but this is not a requirement of the expert system itself. The naming convention
used to date follows the formmission.pl . myexample for Prolog code and
mission _grapl. Couyéexanple for G+ code. Prior to compiling or executing the
missions, the file should be copied intomission _graph.Cormission.pl as

appropriate. Currently the autogene ated Ci-+ code compiles and runs under the Silicon
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Graphics (SGI) Irix operating system on any campus SGI workstation. The autogenerated
Prolog runs on the Voyager laptop only (tony . cs.nps.navy.mil).

 start the different system facilities, the Available Operations menu buttons
(from the main menu shown in Figure 62) are used. Starting any system by selecting the
Phase by Phase Generation or Means Ends Generation button will automatically end
any system facility currently being executed and will clear all data from that operation. Use
of the Create Initialization File or Modity Current Mission will start the appropriate
facility, but will not clear data from memory if another system fuctlity was interrupted.

Directions for use of cach ot the system facilities are provided in the following sections.

C. TACTICAL LEVEL INITIALIZATION FILE GENERATION

When running all three RBM layers, the tactical level requires an initialization file.
This file contains information such as the initial vehicle posture, the locations of the
Divetracker units, and the gyro error. "To start cenerate this file. use the left mouse button
1o click the Create Initialization File button under Available Operations. At this point,
the data is entered using the data input window shown in Figure 63. Data must be entered
using the stiding, bars (point and click using the imap is not enabled). Locations are in X, Y
coordinates corresponding to the grid overlaying the operating arca map. When finished,
use the Ieft mouse button to press the Pone button on the Initialization Parameters data
entry window, The information will be saved in a file called
initial tzation.script. Toend the facility without creating the inttialization file,
use e lett mouse button to press the Caneel button. NOTE: [f more than one mission is
to be generated, copy cach initialization. script file to another file before

creating the next one to avoid overwriting,
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Figure 63: Initialization Parameters Data Input Window.
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D. PHASE-BY-PHASE MISSION SPECIFICATION

1. Entering New Phases

To start the phase-by-phase mission specification facility, use the left mouse button
to click the Phase by Phase Generation button under Available Operations. At this
point, Phase Type and Phase Summary windows will be created. The Phase Type
window is used to specity the type of phasc that is t¢ be entered, while the Phase Summary
window will display a statc table represcutation of the mission as it is entered in. The Fhase
Type and Phase Summary windows arc depicted in Figures 64 and 65 respectively. To
enter a phase, use the left mouse button to choo.e the appropriate type of phase on the
Phase Type menu. Daia entry for phase paramcters for cach type of phase is via windows
that vary depending on the type of phase (all are similar to the data eniry window depicted
in Figure 66). The following section provides a brief summary of what cach type of phase

will accomplish and what parameters must be specified.

sCoursacGhan 16

e

Figure 64 Phase Type Input Window.
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SPECIFIED PHASES \COMPLETE SUCCESSORS .-
dve wait ' R
wat - _ uansiﬁ

transit1 - - hovert

hovert o - searcht -

searchl - ' gps_fwl -

transitz ' hover?

yps_fix1 transit2

pover2 ' saarch?

snarche ; gps_fix2 »

gps_otd - - C- re'tum_iransil
wtum_transit . surface -
suface . mission_camplete

Frowce 00 state Labie Sunmiany of o Mission Specitied Phase by Phiase

Phase Name 1ransir; )

Depth : 3] 0 ==

 Position : 28] 23 i
¥ Pusttion : [20] 25 = |-
Time Out : [z00) 0 === |-

Phase Complete Successor
[Unspecifed

o
Dive S
Mission Complete ' "Mission Camplate | .-
Mission poot ' : " Wission Abort |

Done | Resel Phiase )
Nt e e e e

]

|
2

Frenne cn Dais Inpon A e tor Tranat Pl specitication



Depth Change: Change to new depth whi'e hovering or after transiting.
New depth is - necified.

(Course Change: Change o new course while hovering or after transiting.
New course is specifizd.

Transit: Usc maximum RPM to transic to a new location. Vcehicle will not
stop upon reaching this new location, but will drive through. Transit
location is specified as an (X, Y) position and depth is specified as
well.

Haover: Transit to a new location and establish a hover. Hover location is
specified as an (X, Y) position. Hover depth and hover heading are
also specified.

GPS Fix: Obtain a global posit ning system fix. No special parameters
arc required.

Rotate Soni: - Search: Conduct a senar search from a specified location by
rotati 1g the sonar 260 degrees. Search location is specified as an (X,
Y) position. Search depth is specitied as well.

Rotate AUV Search: Conduct a sonar search from a specified location by
rotating the AUV 360 degrees while maintaining a fixed forward
sona bearing relative to the AUV. Search location is specified as an
(X, Y) position. Search depth is specified as well.

Wait: Continue with curcent operation (eg., hover) for a specified period of
titne. Time to wait is specified.

Recover in Tube: Puiform a recovery in i recovery tube. Location of
recovery tube is specified as an (X, Y) position. Recovery tube
depth and heading are also speciied.

In addition to the above data required by each individual type of phase, all types of
phases require the following information:
Phase Name: This ¢can be made un of numbers and letters and 15 typed in

by the user. No blanks e allowed, and the first character cannot be
a capital letter (if Prolog code is to he geverated).

Time OQut: This is the amount of time (10 seconds) that the phase has
succeed.

10t
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Phase Complete Successor: The name of the phase to execute upor
successiul completion of the phase currently being entered.

Phase Abort Successor: The name of the pbase to execute upon latiure of
the phase currently being entered.

The means of data entry varies depending on the type of data. Numerical data can
be entered using the sliders. The slider ranges for X positions, Y positions, and depths are
defined according to the carrent operating area. Positions for hovers, transits and scarches
can also be entered by clicking the desired position on the area map with the left mouse
button. The name of the phase is typed in by the user at the Phase Name text cotry location.

Push button menus are used to enter the Phase Complete Successor and Phase
Abort Successor. The names of all phases that have been specified previously will have
pushbuttons on both menus (in addition to selections for Mission Abort and Mission
Complete). To set one of these phases as the complete or abort successor, simply use the
left mouse buticn to select the desired phasc. 1f the desired successor phase has not yet been
detined. usc the left mouse button to select the Unspecified menu item. A new data entry
window for specifying the nume of the successor phase will then be displayed. Enter the
inteuded name of the successor phase on the Name blank and use the left mouse bution to
press the Gk button. This phase will need to be specified later (using the conect pame) or
an error will be generated when the system parses the mission prior to code seneration.

Any phase information can be changed after being entered simply by re-entering it
icn all rerquired phase information has been enterad. use the left mouse button to press
the PDone bution on the data entry window, The phase will then be stored in remory and

displayed in the state table of the Phase Summary window. To canced ertry of the current

phase. use the left mouse button to press th- Reset Phase bution on the data entry window.
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NOTE: Mission specification can be interrupied at any time io create the tactical
level initiatialization file without losing phases tha: have been specitied previously
(restarting the phase-by-phase specification facility is discussed later). If the means-ends
mission generation facility is invoked or the phase-by-phase mission specification fucility
is restarted improperly. however, all previously specified phases will be deleted from
ICITIONY.

2.  Modifyving and Deleting Phases Specified Phases

To modify a phase that has been previously entered without deleting it, use the leit
mouse button o select the Modify Phase button in the Phase Type window. A Phase
Modification window similar to the one shown in Figure 67 will be displayed. Use the left
rueuse button to select the name of the pliase thut you wish to modify from the menu in this
window (or the Reset button io remove the window without modifying « phase). A data
entry window for this phase (with the phase data as previously entered) will be displayed.
Data can be entered using this window as if the phase were being initially specified. To
remove the window without changing the phase. use the left mouse button to press the
Reset Phase button, or press the Done button to store the changed phasc definition.

To delete a phasc that has been previously entered, use the left inouse button to
select the Deiete Phase button in the Phase Type window. A Pbase Deletion window
similar to the one shown in Figiwe 67 will be displayed. Use the left mause bution to select
the bution corresponding to the phase to be deleied (or the Reset bution to remove the
window without deleting a phasce).

i no phases have been previously entered iato the systeny and the Meodify Phase o
Defete Phase button is depressed, an error window will be displayed. Use the it o
button to press tie Ok button in the crror window to clear the errov ety v ¥ e done
specifying the mission, do not press the Caucel button. Radhar tollow the vaco o e oy

seneration of exccttable code provided in Section 19
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ress button for p@e 1o modify:

i)

Freure 6/7: Go Phase Maoditieation and ¢hy Phase Deleton Windows,

3. Phase Errors

I the data eniered for o phase s invalid or meomplete when the Done button s
pressed. an error message willbe displayed deseribing the type of crrorinan nvalid Phase
window similar 1o the one shown m Frgure o8 Phases contiwunmy errors wall not b
accepted by the systern, To elea the error messize tse the left mouse bution (o press the
Ok buiton o the arorwindow  Phase dacr cancthen be entered or changed as appropr e,

o1 the Reset Phase broton can be used o caneel phase entry

NEE T

PHASE ERRUR: THE SPECIFIED PHASE IS N
The depth you specified is too deep for this area

ER — :

Mk e

Fooare 68 Tovaind Phase Eroos Repornt Window,

4. Mission Modifieation
e Brase Fype winelow oot preseat ad mssion specttieation s noi complete,

dnsste e thoation e e con aned wonhoot clearmg previonshy specrticd phases from
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memory by using the left touse button io setect the Modify Current Mission button on

the Available Operations menu ot the main system menu. Loss of the Phase ‘Type
window can have a number of causes. The most common is accidental (or intentional) use
of the Cancel button on the Phase Type window. The Phase Type window will also be
removed if the Create Initialization File [acility is invoked. 1t may also be the case that
the window is simply hidden by another window on the screen. Regardless, use of the
Modify Cuarrent Mission button will generate a new Phase Type window, Mission
specification can then proceed. If the Modify Current Mission button is pressed when no
specified phases are contained i memory (either no phases have been specified or memory
was cleared by the invocation of one of the other system facilities), an error message will
be displayed. To clear the error message, use the left mouse button to press the Ok button
on the error windew.

5. Code Generntion

Once mission specitication is complete, code can be generated by following the

instructions in Section F, iixecutable €'ode Generation, Compilation and Operation,

E.  MISSION CGENERATION Wi'TH MTANS-ENDS ANALYSIS

1.  ©Overview and Launch and Recove-  Position Specification

The means ends facility is used tooantomatically generate complete missions by
specifying the AUV launch position, recovery mission. type f recovery and the goals of
the mission. To invoke this facility, use the left mouse button to pres:, the Means Ends
Generator button on the Available Operations menu of the main window. The system
will display the window shown in Figure 69, Use the sliders o1 this window to enter the
AUV faunch und recovery positions (point and click is not enabled). This window is also
used to define the type of recavery to be executed at the end of the wission and enter

locations to be scarched durimg the mission.
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| Tube X Posttion : [0] -

; TubeYPu atioie 3

. - Tuha liepth , -

.

Tube Entry Heading: [0] -0 -

an— e
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Freure 70 Recovery Tube Diata Bntry Window:,

When the position and onentation of the tecovery tube have been specified and
saved. the sostentwall autonmatieaty dpdate the vehicle recovery positton imformation m the
“deans End Help window - This mtormat on can be nanually chaneed ssing the shiders of
Jdooned. however the automaticaliy updated position v one trom wbe B recovery is
possible Manualiy chaneimg this postiion iy Cause anerror when the tisston s parsed
preon o code penetabon al the mantallv selected posiion s not withm the ssstent defed
rangee limatations

X Specitving Search Points
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seaatches fromaser specifed locations Pomis it wohich to canduct searches aee entered one
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routing to the search point, 1se the transit point iocation field. The generated mission will
cause the AUV to transit through this point prior te estiblishing a hover at the search
location (if the search point and transit point are collocated, the AUV wili transit divectly
to the search point and establish a hover). This point can be specified using the slides or
by indicating the transit point location on the arca map using the right mouse button (after
the scarch location has been specified manualtly or with the left mouse butten). To save the
scarch data, use the left mouse button to press the Store Point button in the Search Point
Data window. To cancel search point entry without saving the scarch point data, use the
Canee! button in the Search Point Data window. Once a scarchpoint has been entered into
the system and saved, it cannot be saved. Al scarch points can however be deleted from
memory by using the left mouse button to press the Clear Search Points button n the

Means End Help window.

PP

Figure 71: Scarch Point Data Entry Window.
4. Compuiing a Sequence of Mhises
Once the faunch position. recovery position, type of recovery, and scarchpoints
have been specified, the system can be used 1o generate a sequence of phases that will

accomplish the misston. To invoke this feature. use the left mouse button to press the
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Generate Phase Sequence button in the Means End Help window. The system will then
generate the sequence of phases and display a textual description of the resulting mission
in a window similar to the one shown in Figure 72, In addition the path of the mission will

be depicted on the arca rap of the main system window,

Figure 72: Sumple Means Iinds Analysis Mission Solution Window.

Since means-ends analysis is not guaranteed to find the best solution first. the
capability cxists to cycle through all possible solutions one at a titme. To generate anather
soluiion using means-ends analysis, use the left mouse button to press the Next Solution
bution in the Mean: End Solution window. A new solution will be computed and
displayed textually in a Means End Solution window and geopraphically on the arca map

ol the mam window.




5. Code Generation
Once mission specificaiion is complete and a satisfactory solution has been
obtained, code can be generated by tfollowing the instructions in Section F, Executable

Code Generation. Compilation and Operation.

F. EXECUTABLE CODE GENERATION, COMPILATION AND OPERATION

1.  Code Generation

Exccutable code can be generated based on a mission specified using the phase-by-
phase mission specification {ucility or the neans-ends mission generation factlity. If the
phase-by-phase mission specification fuctlity was used to specify the mission, the
generaed executable code will correspoud to the mission deserioed in the Phase Summary
window. If the means-ends-analysis mission generation iacility was used. the generated
executable code will correspond to the mission deseribed in the current Means ind
Solution window.

To generate executable code simply use the left mouse button to press the GGenerate
Mission Code button in the main systemn window. If the phase-hy-phase iission
specitication facility was used o specily the mission, the system will request the name of
the first phase of the mission, Siuply use the Teft mouse button to select the approptiate
first phase from the menu displayed. I the means ends mission generation facilivy wis
used. this step is not required. Ineithier case. the system will parse the mission to check for
crrors (foops in the graph. no mission complete speciticd, unspecitied phases, ete.) prior to
generating code.

[f errors are detecied, a window similar to ihe one in Figuie 73 will he displayed
To clear the error message. use the left mouse button to press tae Ok button in the Phase
Error window. The mission can be then edited using the phase by phase mission

specification facility or incans-ends mussion generation factlity as appropriate (the only
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errors that can be introduced by the means-ends mission-generation facility are caused by
manually changing the recovery position when a tube recovery is requested as described
above). Editing of missions wit, :rrors is conducted as if no attempt to generate code had

been made.

Figure 73: Error Window for Detected Mission Errors.

If no errors are detected during parsing, the window displayed in Figure 74 will be
displayed. To select the desired language for cutput, use the leit mouse button to press the
Prolog or C++ button as appropriatc. The output file will be tored in the current directory
(~auv/strategic) and will be named according to the Output File Name entry. If
Prolog code is generated, an additional file will be created with a standalone_ added to
the beginning of the nam:. These two files are equivalent except that running the
stancalone file will make queries to the user rather than the tactical level. To clear this

window without generating code, press the Cancel button.

Figure 74: Output Language Selection Wiudow.
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2. Compiling and Running the Mission

a.

The Tactical Level Initialization File

To run a mission, generated files must be transferred from

ai4.cs.nps.navy.mil to the appropriate directories on file system of the machine

upon whict the tactical level is to run. All files should be transferred as ascii files using

the Unix ftp facility.

The initialization. script file should be transferred to the

~auv/tactical directory (or ~auv/uvw/tactical onthe Sun Voyager) regardless

of the language generated by the expert system. When running, the tactical level requires

the file to be called initialization.script, but for storing multiple initialization

files, it is ok to use different names (eg., .extensions for describing what mission the

initialization file is for). An example ftp session is shown below. This session is conducted

from the strategic directory on aid.cs.nps.navy.mil (from the xterm window).

aid>

£ftp gravy3d.cs.nps.navy.mil

userriame: auv

password:

ftp>
ftp>
ftp>
ftp>
fip>
ftp>

ftp>

cd strategic

put mission_graph.C.example

cd ../tactical

put mission.pl.exanple

put initialization.script initvialization.s—-ript.example
put command_ strings command_strings.oxample

quit

In this example, it is assumed that a Prolog and a C++ mission were generated. If only the

C++ version was created, the put mission.pl.example command can be omitted.

If only a Piolog version was created, the cd strategic and put
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mission_graph.C.example can be omitted and the cd .. /tactical command
should be modified to

ftp> cd tactical

b.  Prolog Execution

If Prolog code was generated, the standalone file (standalone__ prefix)
should be placed in the ~auv/strategic directory on the target machine. The mission
file itself should be placed in the ~auv/tactical directory. Either of these files can
have any name so long as they end in the Prolog . p1 extension (and contain no other
periods). To run the standalone stratcgic level, switch tothe ~auv/strategic directory
on the appropriate machine and start Prolog (or Prowindows). Load the mission into
memory by typing the file name (minus the . pl extension) in brackets followed by a
period:

?- [wmission].
To run the mission, type:

7~ execute mission.
Answer the strategic level queries by typing yes or no. To run the mission in the vehicle or
the virtual world (tactical level attached), switch to the ~auv/tactical directory. It is
probably a good idea to mal.e sure the proper version of the tactical level has been
compiled. To do this type:

> make strategic
Start Prolog and load the mission file into memory by typing the file naine (minus the .pl
extension) in brackets followed by a period, just as for the standalone version of the
strategic level. The mission is sterted in the same way as the standalone version as well:

?- execute_mission.
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c.  C++ Compilation and Execution

If the expert system generated a C++ strategic level mission, it must be
compiled prior to running the mission. The generated C++ file should be transferred to the
~auv/strategic directory on the appropriate file system. Before compiling, the C4++
mission file must be namedmission_graph.C and must be located inthe strategic
directory. To compile the mission, from the auv directory and type:

> cd strategic

> ¢p mission_graph.C.example mission graph.C

> ed ../tactical

> make strategic_cpp
The executable tile upon completion of the make will be located in the tactical
directory and will be called strategic. To make a standalone version of the mission,
type:

> make strategic_standalone
from the tactical directory. The executable standalone mission will be placed in the
tactical directory and will be called ood_test. Either the standalone version of the
strategic level or the full RBM version are invoked by typing the name of the executable

file on the command line.

G. EXITING THE SYSTEM AND INDIVIDUAL FACILITIES
To exit the system at any time during execution, use the left mouse button to press
the Quit button in the main window. The Prowindows interpreter can be ~+'ted by typing
?- halt.
Most system windows provide a Cancel button. Pressing this button using the leit

mouse button will cancel the operation without performing it. As a rule, use this button to
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cancel operations and destroy windows rather than the minus button in the upper left

window comer.
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